Matching Items (3)
Filtering by

Clear all filters

153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
157012-Thumbnail Image.png
Description
Human-inhabited or -disturbed areas pose many unique challenges for wildlife, including increased human exposure, novel challenges, such as finding food or nesting sites in novel structures, anthropogenic noises, and novel predators. Animals inhabiting these environments must adapt to such changes by learning to exploit new resources and avoid danger. To

Human-inhabited or -disturbed areas pose many unique challenges for wildlife, including increased human exposure, novel challenges, such as finding food or nesting sites in novel structures, anthropogenic noises, and novel predators. Animals inhabiting these environments must adapt to such changes by learning to exploit new resources and avoid danger. To my knowledge no study has comprehensively assessed behavioral reactions of urban and rural populations to numerous novel environmental stimuli. I tested behavioral responses of urban, suburban, and rural house finches (Haemorhous mexicanus) to novel stimuli (e.g. objects, noises, food), to presentation of a native predator model (Accipiter striatus) and a human, and to two problem-solving challenges (escaping confinement and food-finding). Although I found few population-level differences in behavioral responses to novel objects, environment, and food, I found compelling differences in how finches from different sites responded to novel noise. When played a novel sound (whale call or ship horn), urban and suburban house finches approached their food source more quickly and spent more time on it than rural birds, and urban and suburban birds were more active during the whale-noise presentation. In addition, while there were no differences in response to the native predator, rural birds showed higher levels of stress behaviors when presented with a human. When I replicated this study in juveniles, I found that exposure to humans during development more accurately predicted behavioral differences than capture site. Finally, I found that urban birds were better at solving an escape problem, whereas rural birds were better at solving a food-finding challenge. These results indicate that not all anthropogenic changes affect animal populations equally and that determining the aversive natural-history conditions and challenges of taxa may help urban ecologists better understand the direction and degree to which animals respond to human-induced rapid environmental alterations.
ContributorsWeaver, Melinda (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald (Committee member) / Pratt, Stephen (Committee member) / Bateman, Heather (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
Description
Urban wetland ecosystems provide myriad ecosystem services and are shaped by diverse social and ecological factors. In rapidly urbanizing parts of the desert Southwest, wetlands are especially vital. Across less than 60 km as it enters the Phoenix area, the Salt River is dammed, diverted, re-filled, clear-cut, restored, and ignored.

Urban wetland ecosystems provide myriad ecosystem services and are shaped by diverse social and ecological factors. In rapidly urbanizing parts of the desert Southwest, wetlands are especially vital. Across less than 60 km as it enters the Phoenix area, the Salt River is dammed, diverted, re-filled, clear-cut, restored, and ignored. This study documents how animal and plant communities in three perennially inundated reaches of the river changed over a decade under different social-ecological pressures. One wetland in the urban core is restored, another formed accidentally by human infrastructure, and the last is managed on the urban periphery. Surveys conducted since 2012 used point-count surveys to assess bird communities and visual encounter surveys to assess reptiles and amphibians. Plant communities were surveyed in 2012 and 2022 using cover classes. Between 2012 and 2022, accidental and restored wetlands close to the urban core displayed an increase in plant abundance, largely consisting of introduced species. While all sites saw an increase in plant species considered invasive by land management groups, both urban wetlands saw an increase in regionally native species, including plants that are culturally significant to local Indigenous groups. Reptile communities declined in richness and abundance in both urban sites, but birds grew in abundance and richness at the urban restored site while not changing at the urban accidental wetland. The non-urban site saw stable populations of both birds and herpetofauna. These trends in biotic communities reveal ecological tradeoffs under different management strategies for urban wetlands. These findings also create a portrait of wetland communities along a rapidly urbanizing arid river. As the Salt River watershed becomes more urbanized, it is important to establish a more empathetic and informed relationship between its plant and animal—including human—residents. To this end, these data were incorporated in a series of handmade paper artworks, crafted from the most abundant wetland plant species found at the study sites, harvested alongside local land management efforts. These artworks examine the potential of four common cosmopolitan wetland plants for papermaking, revealing the potential to align ecosystem management efforts with both materials production and fine arts. By using relief printmaking to visualize long-term ecological data, I explored an alternative, more creative and embodied way to engage with and visualize urban wetland communities. This alternate mode of engagement can complement ecological management and research to diversify disciplines and participants engaged with understanding and living alongside urban wetlands.
ContributorsRamsey-Wiegmann, Luke Dawson (Author) / Childers, Daniel L (Thesis advisor) / Makings, Elizabeth (Committee member) / Bateman, Heather (Committee member) / Arizona State University (Publisher)
Created2023