Matching Items (1)
Description
Many radioactive decay schemes employed in geochronology prove imprecise when placing accurate age constraints on young basalt flows. The (U-Th)/He systematics of detrital zircon and apatite within baked zones is examined as an alternative. Parent-daughter radioisotope ratios within grains from baked zones can completely reset if subjected to temperatures high

Many radioactive decay schemes employed in geochronology prove imprecise when placing accurate age constraints on young basalt flows. The (U-Th)/He systematics of detrital zircon and apatite within baked zones is examined as an alternative. Parent-daughter radioisotope ratios within grains from baked zones can completely reset if subjected to temperatures high enough and long enough for bulk diffusive loss. Presented here is the reproducibility of initial attempts to date flows by examining the (U-Th)/He geochronology of grains within baked zones. We examine grains from two localities within the San Francisco Volcanic Field and the Mormon Volcanic Field in northern Arizona. Thirteen zircon and apatite grains yielded from locality 2 collected from the uppermost 10 cm beneath a 7m flow of a basalt yield an apparent age of 4.39 ± 0.28 Ma (2σ), which is within range of published Middle Pliocene ages. Twenty-nine grains from locality 1 collected from the uppermost 20 cm beneath a 2 to 5m flow yield dates ranging from 0.47 ± 0.02 Ma to 892.77 ± 27.02 Ma, indicating the grains were partially reset or not reset at all. The degree to which grains are reset depends on a variety of factors detailed in this study. With these factors accounted for however, our study confirms application of this indirect dating technique is a useful tool for dating basaltic flows.
ContributorsCronk, Stephanie Sarah (Author) / Hodges, Kip (Thesis director) / van Soest, Matthijs (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05