Matching Items (387)
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
156013-Thumbnail Image.png
Description
On average, our society generates ~0.5 ton of municipal solid waste per person annually. Biomass waste can be gasified to generate synthesis gas (syngas), a gas mixture consisting predominantly of CO, CO2, and H2. Syngas, rich in carbon and electrons, can fuel the metabolism of carboxidotrophs, anaerobic microorganisms that

On average, our society generates ~0.5 ton of municipal solid waste per person annually. Biomass waste can be gasified to generate synthesis gas (syngas), a gas mixture consisting predominantly of CO, CO2, and H2. Syngas, rich in carbon and electrons, can fuel the metabolism of carboxidotrophs, anaerobic microorganisms that metabolize CO (a toxic pollutant) and produce biofuels (H2, ethanol) and commodity chemicals (acetate and other fatty acids). Despite the attempts for commercialization of syngas fermentation by several companies, the metabolic processes involved in CO and syngas metabolism are not well understood. This dissertation aims to contribute to the understanding of CO and syngas fermentation by uncovering key microorganisms and understanding their metabolism. For this, microbiology and molecular biology techniques were combined with analytical chemistry analyses and deep sequencing techniques. First, environments where CO is commonly detected, including the seafloor, volcanic sand, and sewage sludge, were explored to identify potential carboxidotrophs. Since carboxidotrophs from sludge consumed CO 1000 faster than those in nature, mesophilic sludge was used as inoculum to enrich for CO- and syngas- metabolizing microbes. Two carboxidotrophs were isolated from this culture: an acetate/ethanol-producer 99% phylogenetically similar to Acetobacterium wieringae and a novel H2-producer, Pleomorphomonas carboxidotrophicus sp. nov. Comparison of CO and syngas fermentation by the CO-enriched culture and the isolates suggested mixed-culture syngas fermentation as a better alternative to ferment CO-rich gases. Advantages of mixed cultures included complete consumption of H2 and CO2 (along with CO), flexibility under different syngas compositions, functional redundancy (for acetate production) and high ethanol production after providing a continuous supply of electrons. Lastly, dilute ethanol solutions, typical of syngas fermentation processes, were upgraded to medium-chain fatty acids (MCFA), biofuel precursors, through the continuous addition of CO. In these bioreactors, methanogens were inhibited and Peptostreptococcaceae and Lachnospiraceae spp. most likely partnered with carboxidotrophs for MCFA production. These results reveal novel microorganisms capable of effectively consuming an atmospheric pollutant, shed light on the interplay between syngas components, microbial communities, and metabolites produced, and support mixed-culture syngas fermentation for the production of a wide variety of biofuels and commodity chemicals.
ContributorsEsquivel Elizondo, Sofia Victoria (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Delgado, Anca G. (Committee member) / Torres, Cesar I. (Committee member) / Arizona State University (Publisher)
Created2017
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
137067-Thumbnail Image.png
Description
Growing concern over health risks associated with environmental contaminants has prompted an increase in the search for effective detection methods. The available options provide acceptable sensitivity and specificity, but with high purchase and maintenance costs. Herein, a low-cost, portable environmental contaminant sensor was developed using electrochemical techniques and an efficient

Growing concern over health risks associated with environmental contaminants has prompted an increase in the search for effective detection methods. The available options provide acceptable sensitivity and specificity, but with high purchase and maintenance costs. Herein, a low-cost, portable environmental contaminant sensor was developed using electrochemical techniques and an efficient hydrogel capture mechanism. The sensor operates with high sensitivity and maintains specificity without the added requirement of extensive electrode modification. Rather, specificity is obtained by choosing specific potential regions in which individual contaminants show reduction or oxidation activity. A calibration curve was generated showing the utility of the sensor in detecting gas compounds reliably in reference to a current state of the art sensor. Reusability of the sensor was also demonstrated with a cyclic exposure test in which response reversibility was observed. As such, the investigated sensor shows great promise as a replacement technology in the current environmental contaminant detector industry.
ContributorsMarch, Michael Stephen (Author) / LaBelle, Jeffrey (Thesis director) / Caplan, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
ContributorsOftedahl, Paul (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-29
ContributorsMarshall, Kimberly (Performer) / Meszler, Alexander (Performer) / Yatso, Toby (Narrator) / ASU Library. Music Library (Publisher)
Created2018-09-16
154739-Thumbnail Image.png
Description
Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance

Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined.

After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.
ContributorsMiller, Benjamin (Author) / Crozier, Peter (Thesis advisor) / Liu, Jingyue (Committee member) / McCartney, Martha (Committee member) / Rez, Peter (Committee member) / Arizona State University (Publisher)
Created2016
ContributorsTaylor, Karen Stephens (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-21
ContributorsCramer, Craig (Performer) / ASU Library. Music Library (Publisher)
Created1997-02-16
ContributorsMarshall, Kimberly (Performer) / ASU Library. Music Library (Publisher)
Created2019-03-17