Matching Items (6)
Filtering by

Clear all filters

152605-Thumbnail Image.png
Description
In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution:

In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution: Setting the Record Straight <”> and the New York Times, <“>Biology Text Illustrations more Fiction than Fact.<”> Meanwhile, others emphatically stated that the goal of comparative embryology was not to resurrect Haeckel's work. At the center of the controversy was Haeckel's no-longer-accepted idea of recapitulation. Haeckel believed that the development of an embryo revealed the adult stages of the organism's ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel's embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel's embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids. I coded and categorized the grids according to accompanying discussion of (a) embryonic similarities (b) recapitulation, (c) common ancestors, and (d) evolution. The textbooks show changing narratives. Embryo grids gained prominence in the 1940s, and the trend continued until criticisms of Haeckel reemerged in the late 1990s, resulting in (a) grids with fewer organisms and developmental stages or (b) no grid at all. Discussion about embryos and evolution dropped significantly.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Creath, Richard (Committee member) / Robert, Jason S. (Committee member) / Laubichler, Manfred D. (Committee member) / Arizona State University (Publisher)
Created2014
136990-Thumbnail Image.png
Description
This project focuses on the history of how teratogens, or agents which have the potential to cause birth defects, have been understood and tested for teratogenic potential in the US over the twentieth century. Prior to this time, teratogen studies were primarily concerned with cataloguing defects rather than exploring possible

This project focuses on the history of how teratogens, or agents which have the potential to cause birth defects, have been understood and tested for teratogenic potential in the US over the twentieth century. Prior to this time, teratogen studies were primarily concerned with cataloguing defects rather than exploring possible causes. At the turn of the twentieth century, experimental teratogen studies with the aim of elucidating mechanisms commenced. However, these early studies did not aim to discover human pregnancy outcomes and ways to prevent them, but simply focused on the results of exposing pregnant mammals to various physical and chemical insults. My project documents the change in understanding of teratogens over the twentieth century, the advancement of testing methods, and the causes of these advancements. Through the Embryo Project at Arizona State University (embryo.asu.edu), a digital encyclopedia for topics related to embryology, development, and reproductive medicine, I wrote ten encyclopedic articles that focused on chemical mechanisms of various teratogens, testing limitations in animal models, and legal and regulatory responses to well-known teratogens. As an extension of my previous work, this project bridges the current gap in research and focuses on contextualizing major events in the field of teratology to determine how these events led to various shifts in the understanding of birth defects and their causes, and how those conceptual shifts led to the creation of teratological testing guidelines. Results show that throughout the twentieth century, there are four distinct shifts in the understanding of teratogens: the first being 1900-1945, the second being 1946-1960, the third being 1961-1980, and the fourth being 1981-2000.
ContributorsTantibanchachai, Chanapa (Author) / Maienschein, Jane (Thesis director) / Laubichler, Manfred (Committee member) / O'Neil, Erica (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
149333-Thumbnail Image.png
Description
Biology textbooks are everybody's business. In accepting the view that texts are created with specific social goals in mind, I examined 127 twentieth-century high school biology textbooks for representations of animal development. Paragraphs and visual representations were coded and placed in one of four scientific literacy categories: descriptive, investigative, nature

Biology textbooks are everybody's business. In accepting the view that texts are created with specific social goals in mind, I examined 127 twentieth-century high school biology textbooks for representations of animal development. Paragraphs and visual representations were coded and placed in one of four scientific literacy categories: descriptive, investigative, nature of science, and human embryos, technology, and society (HETS). I then interpreted how embryos and fetuses have been socially constructed for students. I also examined the use of Haeckel's embryo drawings to support recapitulation and evolutionary theory. Textbooks revealed that publication of Haeckel's drawings was influenced by evolutionists and anti-evolutionists in the 1930s, 1960s, and the 1990s. Haeckel's embryos continue to persist in textbooks because they "safely" illustrate similarities between embryos and are rarely discussed in enough detail to understand comparative embryology's role in the support of evolution. Certain events coincided with changes in how embryos were presented: (a) the growth of the American Medical Association (AMA) and an increase in birth rates (1950s); (b) the Biological Sciences Curriculum Study (BSCS) and public acceptance of birth control methods (1960s); (c) Roe vs. Wade (1973); (d) in vitro fertilization and Lennart Nilsson's photographs (1970s); (e) prenatal technology and fetocentrism (1980s); and (f) genetic engineering and Science-Technology-Society (STS) curriculum (1980s and 1990s). By the end of the twentieth century, changing conceptions, research practices, and technologies all combined to transform the nature of biological development. Human embryos went from a highly descriptive, static, and private object to that of sometimes contentious public figure. I contend that an ignored source for helping move embryos into the public realm is schoolbooks. Throughout the 1900s, authors and publishers accomplished this by placing biology textbook embryos and fetuses in several different contexts--biological, technological, experimental, moral, social, and legal.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Robert, Jason S. (Committee member) / Arizona State University (Publisher)
Created2010
172850-Thumbnail Image.png
Description

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects of vasectomy or testicular implants on male sex hormone production. Moore's experiments to create hermaphrodites in the laboratory contributed to the theory of a feedback loop between the pituitary and fetal gonadal hormones to control sex differentiation. Moore showed that the scrotal sac controls the temperature for the testes, which is necessary for sperm production. He also helped distinguish the hormones testosterone, and androsterone from testicular extracts.

Created2014-02-18
172767-Thumbnail Image.png
Description

The biogenetic law is a theory of development and evolution proposed by Ernst Haeckel in Germany in the 1860s. It is one of several recapitulation theories, which posit that the stages of development for an animal embryo are the same as other animals' adult stages or forms. Commonly stated as

The biogenetic law is a theory of development and evolution proposed by Ernst Haeckel in Germany in the 1860s. It is one of several recapitulation theories, which posit that the stages of development for an animal embryo are the same as other animals' adult stages or forms. Commonly stated as ontogeny recapitulates phylogeny, the biogenetic law theorizes that the stages an animal embryo undergoes during development are a chronological replay of that species' past evolutionary forms. The biogenetic law states that each embryo's developmental stage represents an adult form of an evolutionary ancestor. According to the law, by studying the stages of embryological development, one is, in effect, studying the history and diversification of life on Earth. The biogenetic law implied that researchers could study evolutionary relationships between taxa by comparing the developmental stages of embryos for organisms from those taxa. Furthermore, the evidence from embryology supported the theory that all of species on Earth share a common ancestor.

Created2014-05-03
173765-Thumbnail Image.png
Description

Cocaine use by pregnant women has a variety of effects on the embryo and fetus, ranging from various gastro-intestinal and cardiac defects to tissue death from insufficient blood supply. Thus, cocaine has been termed a teratogen, or an agent that causes defects in fetuses during prenatal development. Cocaine is one

Cocaine use by pregnant women has a variety of effects on the embryo and fetus, ranging from various gastro-intestinal and cardiac defects to tissue death from insufficient blood supply. Thus, cocaine has been termed a teratogen, or an agent that causes defects in fetuses during prenatal development. Cocaine is one of the most commonly used drugs in the US and it has a history of both medical and illegal recreational use. It is a drug capable of a wide array of effects on physical and mental health. Research on the teratogenic effects of cocaine began in the early 1980s, and in 1985 research on the effects of cocaine on prenatal development gained widespread attention. Since then, numerous studies have contributed to information about the detrimental impacts of maternal cocaine use on embryonic and fetal development.

Created2013-10-17