Matching Items (3)
Filtering by

Clear all filters

150416-Thumbnail Image.png
Description
The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to

The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to evolve independently of one another. Such linked characters are "constrained" and are expected to express covariation both within and among species. In this study, the pattern and magnitude of covariation among aspects of dental size and shape are investigated in anthropoid primates. Pleiotropy has been hypothesized to play a significant role in derivation of derived hominin morphologies. This study tests a series of hypotheses; including 1) that negative within- and among-species covariation exists between the anterior (incisors and canines) and postcanine teeth, 2) that covariation is strong and positive between the canines and incisors, 3) that there is a dimorphic pattern of within-species covariation and coevolution for characters of the canine honing complex, 4) that patterns of covariation are stable among anthropoids, and 5) that genetic constraints have been a strong bias on the diversification of anthropoid dental morphology. The study finds that patterns of variance-covariance are conserved among species. Despite these shared patterns of variance-covariance, dental diversification has frequently occurred along dimensions not aligned with the vector of genetic constraint. As regards the canine honing complex, there is no evidence for a difference in the pleiotropic organization or the coevolution of characters of the complex in males and females, which undermines arguments that the complex is selectively important only in males. Finally, there is no evidence for strong or negative pleiotropy between any dental characters, which falsifies hypotheses that predict such relationships between incisors and postcanine teeth or between the canines and the postcanine teeth.
ContributorsDelezene, Lucas (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark (Committee member) / Verrelli, Brian C (Committee member) / Arizona State University (Publisher)
Created2011
136980-Thumbnail Image.png
Description
Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional

Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional significance of cervical curvature, the identification of cervical lordosis in osteological material, and the representation of the cervical spine in the hominin fossil record.
ContributorsFatica, Lawrence Martin (Author) / Kimbel, William (Thesis director) / Reed, Kaye (Committee member) / Schwartz, Gary (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
154568-Thumbnail Image.png
Description
Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development

Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development and nearly vestigial deciduous teeth. The development and functional occlusion of the primary postcanine dentition (i.e., deciduous premolars and molars) coincides with several life history parameters in great apes and indriids. This dissertation explored great ape dental macrowear, molar development in indriids, and molar size in lemurs with a broader goal of improving reconstructions of life history profiles in extinct primates. To this aim, macrowear and dental development were analyzed in apes and lemurs, respectively. Occlusal casts (six great ape species; N=278) were scanned to track mandibular fourth deciduous premolar (dp4) macrowear. Utilizing dental topographic analyses, changes in occlusal gradient and terrain were quantified. A subset of the great ape data (four species; n=199) was analyzed to test if differences in dp4 wear correlate with age at weaning. Using dental histology, molar development was reconstructed for Indri indri (n=1) and Avahi laniger (n=1). Life history and molar size data were collected from the literature. The results of this dissertation demonstrate that most great apes exhibited evidence of topographic maintenance, suggesting dp4s wear in a manner that maintain functional efficiency during growth and development; however, the manner in which maintenance is achieved (e.g., preservation of relief or complexity) is species specific. Dp4 macrowear is not correlated with age at weaning in great apes and is probably unreliable to reconstruct age at weaning in hominins. The pace of molar development in members of the indriid- palaeopropithecid clade did not correlate with body or brain size, an association present in several other primates. Associations of molar size with age at weaning suggest that expanding other developmental models (e.g., the inhibitory cascade) to life history is worth consideration. The broad variation in macrowear, dental development, and size highlights how the primary dentition may correlate with different life history parameters depending on the species and ecological setting, an important consideration when using teeth to reconstruct life history profiles.
ContributorsCatlett, Kierstin Kay (Author) / Schwartz, Gary (Thesis advisor) / Barton, Michael (Committee member) / Godfrey, Laurie (Committee member) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2016