Matching Items (5)

136959-Thumbnail Image.png

Automated Price Optimization Strategy of Software-as-a-Service Company using Adaptive A/B Testing

Description

The thesis will study price optimization techniques, SaaS industry pricing structures, A/B testing, and then build a unique framework to optimize price and maximize revenue. The ultimate goal of the

The thesis will study price optimization techniques, SaaS industry pricing structures, A/B testing, and then build a unique framework to optimize price and maximize revenue. The ultimate goal of the thesis research is to create a framework that identifies the best pricing structure and price points for a SaaS company.

Contributors

Agent

Created

Date Created
  • 2014-05

154909-Thumbnail Image.png

Toward customizable multi-tenant SaaS applications

Description

Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud

Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the best attributes of the two paradigms to promote an open, interoperable environment for cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA have more flexibility and are not locked down by a certain platform. Tenants residing on a multi-tenant application appear to be the sole owner of the application and not aware of the existence of others. A multi-tenant SaaS application accommodates each tenant’s unique requirements by allowing tenant-level customization. A complex SaaS application that supports hundreds, even thousands of tenants could have hundreds of customization points with each of them providing multiple options, and this could result in a huge number of ways to customize the application. This dissertation also proposes innovative customization approaches, which studies similar tenants’ customization choices and each individual users behaviors, then provides guided semi-automated customization process for the future tenants. A semi-automated customization process could enable tenants to quickly implement the customization that best suits their business needs.

Contributors

Agent

Created

Date Created
  • 2016

154217-Thumbnail Image.png

Modeling, simulation and analysis for software-as-service in cloud

Description

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems.

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency.

This research introduces Modeling, Simulation and Analysis for Software-as-Service in Cloud. The researches cover the following topics: service modeling, policy specification, code generation, dynamic simulation, timing, event and log analysis. Moreover, the framework integrates current advantages of cloud: configurability, Multi-Tenancy, scalability and recoverability.

The following chapters are provided in the architecture:

Multi-Tenancy Simulation Software-as-a-Service.

Policy Specification for MTA simulation environment.

Model Driven PaaS Based SaaS modeling.

Dynamic analysis and dynamic calibration for timing analysis.

Event-driven Service-Oriented Simulation Framework.

LTBD: A Triage Solution for SaaS.

Contributors

Agent

Created

Date Created
  • 2015

153103-Thumbnail Image.png

Test algebra for concurrent combinatorial testing

Description

A new algebraic system, Test Algebra (TA), is proposed for identifying faults in combinatorial testing for SaaS (Software-as-a-Service) applications. In the context of cloud computing, SaaS is a new software

A new algebraic system, Test Algebra (TA), is proposed for identifying faults in combinatorial testing for SaaS (Software-as-a-Service) applications. In the context of cloud computing, SaaS is a new software delivery model, in which mission-critical applications are composed, deployed, and executed on cloud platforms. Testing SaaS applications is challenging because new applications need to be tested once they are composed, and prior to their deployment. A composition of components providing services yields a configuration providing a SaaS application. While individual components

in the configuration may have been thoroughly tested, faults still arise due to interactions among the components composed, making the configuration faulty. When there are k components, combinatorial testing algorithms can be used to identify faulty interactions for t or fewer components, for some threshold 2 <= t <= k on the size of interactions considered. In general these methods do not identify specific faults, but rather indicate the presence or absence of some fault. To identify specific faults, an adaptive testing regime repeatedly constructs and tests configurations in order to determine, for each interaction of interest, whether it is faulty or not. In order to perform such testing in a loosely coupled distributed environment such as

the cloud, it is imperative that testing results can be combined from many different servers. The TA defines rules to permit results to be combined, and to identify the faulty interactions. Using the TA, configurations can be tested concurrently on different servers and in any order. The results, using the TA, remain the same.

Contributors

Agent

Created

Date Created
  • 2014

149538-Thumbnail Image.png

Towards effective and intelligent multi-tenancy SaaS

Description

Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized

Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a now paradigm in cloud computing, which goal is to provide an effective and intelligent way to support end users' on-demand requirements to computing resources, including maturity levels of customizable, multi-tenancy and scalability. To meet requirements of on-demand, my thesis discusses several critical research problems and proposed solutions using real application scenarios. Service providers receive multiple requests from customers, how to prioritize those service requests to maximize the business values is one of the most important issues in cloud. An innovative prioritization model is proposed, which uses different types of information, including customer, service, environment and workflow information to optimize the performance of the system. To provide "on-demand" services, an accurate demand prediction and provision become critical for the successful of the cloud computing. An effective demand prediction model is proposed, and applied to a real mortgage application. To support SaaS customization and fulfill the various functional and quality requirements of individual tenants, a unified and innovative multi-layered customization framework is proposed to support and manage the variability of SaaS applications. To support scalable SaaS, a hybrid database design to support SaaS customization with two-layer database partitioning is proposed. To support secure SaaS, O-RBAC, an ontology based RBAC (Role based Access Control) model is used for Multi-Tenancy Architecture in clouds. To support a significant number of tenants, an easy to use SaaS construction framework is proposed. As a summary, this thesis discusses the most important research problems in cloud computing, towards effective and intelligent SaaS. The research in this thesis is critical to the development of cloud computing and provides fundamental solutions to those problems.

Contributors

Agent

Created

Date Created
  • 2011