Matching Items (4)
Filtering by

Clear all filters

152256-Thumbnail Image.png
Description
Due to great challenges from aggressive environmental regulations, increased demand due to new technologies and the integration of renewable energy sources, the energy industry may radically change the way the power system is operated and designed. With the motivation of studying and planning the future power system under these new

Due to great challenges from aggressive environmental regulations, increased demand due to new technologies and the integration of renewable energy sources, the energy industry may radically change the way the power system is operated and designed. With the motivation of studying and planning the future power system under these new challenges, the development of the new tools is required. A network equivalent that can be used in such planning tools needs to be generated based on an accurate power flow model and an equivalencing procedure that preserves the key characteristics of the original system. Considering the pervasive use of the dc power flow models, their accuracy is of great concern. The industry seems to be sanguine about the performance of dc power flow models, but recent research has shown that the performance of different formulations is highly variable. In this thesis, several dc power-flow models are analyzed theoretically and evaluated numerically in IEEE 118-bus system and Eastern Interconnection 62,000-bus system. As shown in the numerical example, the alpha-matching dc power flow model performs best in matching the original ac power flow solution. Also, the possibility of applying these dc models in the various applications has been explored and demonstrated. Furthermore, a novel hot-start optimal dc power-flow model based on ac power transfer distribution factors (PTDFs) is proposed, implemented and tested. This optimal-reactance-only dc model not only matches the original ac PF solution well, but also preserves the congestion pattern obtain from the OPF results of the original ac model. Three improved strategies were proposed for applying the bus-aggregation technique to the large-scale systems, like EI and ERCOT, to improve the execution time, and memory requirements when building a reduced equivalent model. Speed improvements of up to a factor of 200 were observed.
ContributorsQi, Yingying (Author) / Tylavsky, Daniel J (Thesis advisor) / Hedman, Kory W (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2013
152934-Thumbnail Image.png
Description
This thesis focuses on developing an integrated transmission and distribution framework that couples the two sub-systems together with due consideration to conventional demand flexibility. The proposed framework ensures accurate representation of the system resources and the network conditions when modeling the distribution system in the transmission OPF and vice-versa. It

This thesis focuses on developing an integrated transmission and distribution framework that couples the two sub-systems together with due consideration to conventional demand flexibility. The proposed framework ensures accurate representation of the system resources and the network conditions when modeling the distribution system in the transmission OPF and vice-versa. It is further used to develop an accurate pricing mechanism (Distribution-based Location Marginal Pricing), which is reflective of the moment-to-moment costs of generating and delivering electrical energy, for the distribution system. By accurately modeling the two sub-systems, we can improve the economic efficiency and the system reliability, as the price sensitive resources can be controlled to behave in a way that benefits the power system as a whole.
ContributorsSinghal, Nikita G (Author) / Hedman, Kory W (Thesis advisor) / Tylavsky, Daniel J (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2014
Description
Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the Newton-Raphson method) are not guaranteed to obtain a converged solution when the system is heavily loaded.

This thesis describes a novel non-iterative holomorphic embedding (HE) method to solve the power flow problem that eliminates the convergence issues and the uncertainty of the existence of the solution. It is guaranteed to find a converged solution if the solution exists, and will signal by an oscillation of the result if there is no solution exists. Furthermore, it does not require a guess of the initial voltage solution.

By embedding the complex-valued parameter α into the voltage function, the power balance equations become holomorphic functions. Then the embedded voltage functions are expanded as a Maclaurin power series, V(α). The diagonal Padé approximant calculated from V(α) gives the maximal analytic continuation of V(α), and produces a reliable solution of voltages. The connection between mathematical theory and its application to power flow calculation is described in detail.

With the existing bus-type-switching routine, the models of phase shifters and three-winding transformers are proposed to enable the HE algorithm to solve practical large-scale systems. Additionally, sparsity techniques are used to store the sparse bus admittance matrix. The modified HE algorithm is programmed in MATLAB. A study parameter β is introduced in the embedding formula βα + (1- β)α^2. By varying the value of β, numerical tests of different embedding formulae are conducted on the three-bus, IEEE 14-bus, 118-bus, 300-bus, and the ERCOT systems, and the numerical performance as a function of β is analyzed to determine the “best” embedding formula. The obtained power-flow solutions are validated using MATPOWER.
ContributorsLi, Yuting (Author) / Tylavsky, Daniel J (Thesis advisor) / Undrill, John (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2015
136899-Thumbnail Image.png
Description
Much research has been devoted to identifying trends in either convergence upon a neoliberal model or divergence among welfare states in connection to globalization, but most research has focused on advanced industrialized countries. This has limited our understanding of the current state of convergence or divergence, especially among welfare states

Much research has been devoted to identifying trends in either convergence upon a neoliberal model or divergence among welfare states in connection to globalization, but most research has focused on advanced industrialized countries. This has limited our understanding of the current state of convergence or divergence, especially among welfare states in developing regions. To address this research gap and contribute to the broader convergence vs. divergence debate, this research explores welfare state variation found within Latin America, in terms of the health policy domain, through the use of cross-national data from 18 countries collected between the period of 1995 to 2010 and the application of a series of descriptive and regression analysis techniques. Analyses revealed divergence within Latin America in the form of three distinct welfare states, and that among these welfare states income inequality, trust in traditional public institutions, and democratization, are significantly related to welfare state type and health performance.
ContributorsJohnson, Kory Alfred (Author) / Martin, Nathan (Thesis director) / Gonzales, Vanna (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-05