Matching Items (4)
Filtering by

Clear all filters

157010-Thumbnail Image.png
Description
I investigate two models interacting agent systems: the first is motivated by the flocking and swarming behaviors in biological systems, while the second models opinion formation in social networks. In each setting, I define natural notions of convergence (to a ``flock" and to a ``consensus'', respectively), and study the convergence

I investigate two models interacting agent systems: the first is motivated by the flocking and swarming behaviors in biological systems, while the second models opinion formation in social networks. In each setting, I define natural notions of convergence (to a ``flock" and to a ``consensus'', respectively), and study the convergence properties of each in the limit as $t \rightarrow \infty$. Specifically, I provide sufficient conditions for the convergence of both of the models, and conduct numerical experiments to study the resulting solutions.
ContributorsTheisen, Ryan (Author) / Motsch, Sebastien (Thesis advisor) / Lanchier, Nicholas (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2018
137407-Thumbnail Image.png
Description
This thesis explores and explains a stochastic model in Evolutionary Game Theory introduced by Dr. Nicolas Lanchier. The model is a continuous-time Markov chain that maps the two-dimensional lattice into the strategy space {1,2}. At every vertex in the grid there is exactly one player whose payoff is determined by

This thesis explores and explains a stochastic model in Evolutionary Game Theory introduced by Dr. Nicolas Lanchier. The model is a continuous-time Markov chain that maps the two-dimensional lattice into the strategy space {1,2}. At every vertex in the grid there is exactly one player whose payoff is determined by its strategy and the strategies of its neighbors. Update times are exponential random variables with parameters equal to the absolute value of the respective cells' payoffs. The model is connected to an ordinary differential equation known as the replicator equation. This differential equation is analyzed to find its fixed points and stability. Then, by simulating the model using Java code and observing the change in dynamics which result from varying the parameters of the payoff matrix, the stochastic model's phase diagram is compared to the replicator equation's phase diagram to see what effect local interactions and stochastic update times have on the evolutionary stability of strategies. It is revealed that in the stochastic model altruistic strategies can be evolutionarily stable, and selfish strategies are only evolutionarily stable if they are more selfish than their opposing strategy. This contrasts with the replicator equation where selfishness is always evolutionarily stable and altruism never is.
ContributorsWehn, Austin Brent (Author) / Lanchier, Nicolas (Thesis director) / Kang, Yun (Committee member) / Motsch, Sebastien (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2013-12
136899-Thumbnail Image.png
Description
Much research has been devoted to identifying trends in either convergence upon a neoliberal model or divergence among welfare states in connection to globalization, but most research has focused on advanced industrialized countries. This has limited our understanding of the current state of convergence or divergence, especially among welfare states

Much research has been devoted to identifying trends in either convergence upon a neoliberal model or divergence among welfare states in connection to globalization, but most research has focused on advanced industrialized countries. This has limited our understanding of the current state of convergence or divergence, especially among welfare states in developing regions. To address this research gap and contribute to the broader convergence vs. divergence debate, this research explores welfare state variation found within Latin America, in terms of the health policy domain, through the use of cross-national data from 18 countries collected between the period of 1995 to 2010 and the application of a series of descriptive and regression analysis techniques. Analyses revealed divergence within Latin America in the form of three distinct welfare states, and that among these welfare states income inequality, trust in traditional public institutions, and democratization, are significantly related to welfare state type and health performance.
ContributorsJohnson, Kory Alfred (Author) / Martin, Nathan (Thesis director) / Gonzales, Vanna (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-05
154488-Thumbnail Image.png
Description
This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of

This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of related past work is given along with a summary of the dynamics in the mean-field model, which is described by the replicator equation. Then the dynamics of the interacting particle system is considered, first when individuals are updated according to the best-response update process and then the death-birth update process. Several interesting results are derived, and the differences between the interacting particle system model and the replicator dynamics are emphasized. The terms selfish and altruistic are defined according to a certain ordering of payoff parameters. In these terms, the replicator dynamics are simple: coexistence occurs if both strategies are altruistic; the selfish strategy wins if one strategy is selfish and the other is altruistic; and there is bistability if both strategies are selfish. Under the best-response update process, it is shown that there is no bistability region. Instead, in the presence of at least one selfish strategy, the most selfish strategy wins, while there is still coexistence if both strategies are altruistic. Under the death-birth update process, it is shown that regardless of the range of interactions and the dimension, regions of coexistence and bistability are both reduced. Additionally, coexistence occurs in some parameter region for large enough interaction ranges. Finally, in contrast with the replicator equation and the best-response update process, cooperators can win in the prisoner's dilemma for the death-birth process in one-dimensional nearest-neighbor interactions.
ContributorsEvilsizor, Stephen (Author) / Lanchier, Nicolas (Thesis advisor) / Kang, Yun (Committee member) / Motsch, Sebastien (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2016