Matching Items (3)

136899-Thumbnail Image.png

Three Worlds of Welfare Capitalism? Welfare State Development in 18 Latin American Countries, 1995-2010

Description

Much research has been devoted to identifying trends in either convergence upon a neoliberal model or divergence among welfare states in connection to globalization, but most research has focused on

Much research has been devoted to identifying trends in either convergence upon a neoliberal model or divergence among welfare states in connection to globalization, but most research has focused on advanced industrialized countries. This has limited our understanding of the current state of convergence or divergence, especially among welfare states in developing regions. To address this research gap and contribute to the broader convergence vs. divergence debate, this research explores welfare state variation found within Latin America, in terms of the health policy domain, through the use of cross-national data from 18 countries collected between the period of 1995 to 2010 and the application of a series of descriptive and regression analysis techniques. Analyses revealed divergence within Latin America in the form of three distinct welfare states, and that among these welfare states income inequality, trust in traditional public institutions, and democratization, are significantly related to welfare state type and health performance.

Contributors

Agent

Created

Date Created
  • 2014-05

Effect of various holomorphic embeddings on convergence rate and condition number as applied to the power flow problem

Description

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the Newton-Raphson method) are not guaranteed to obtain a converged solution when the system is heavily loaded.

This thesis describes a novel non-iterative holomorphic embedding (HE) method to solve the power flow problem that eliminates the convergence issues and the uncertainty of the existence of the solution. It is guaranteed to find a converged solution if the solution exists, and will signal by an oscillation of the result if there is no solution exists. Furthermore, it does not require a guess of the initial voltage solution.

By embedding the complex-valued parameter α into the voltage function, the power balance equations become holomorphic functions. Then the embedded voltage functions are expanded as a Maclaurin power series, V(α). The diagonal Padé approximant calculated from V(α) gives the maximal analytic continuation of V(α), and produces a reliable solution of voltages. The connection between mathematical theory and its application to power flow calculation is described in detail.

With the existing bus-type-switching routine, the models of phase shifters and three-winding transformers are proposed to enable the HE algorithm to solve practical large-scale systems. Additionally, sparsity techniques are used to store the sparse bus admittance matrix. The modified HE algorithm is programmed in MATLAB. A study parameter β is introduced in the embedding formula βα + (1- β)α^2. By varying the value of β, numerical tests of different embedding formulae are conducted on the three-bus, IEEE 14-bus, 118-bus, 300-bus, and the ERCOT systems, and the numerical performance as a function of β is analyzed to determine the “best” embedding formula. The obtained power-flow solutions are validated using MATPOWER.

Contributors

Agent

Created

Date Created
  • 2015

157010-Thumbnail Image.png

Convergence results for two models of interaction

Description

I investigate two models interacting agent systems: the first is motivated by the flocking and swarming behaviors in biological systems, while the second models opinion formation in social networks. In

I investigate two models interacting agent systems: the first is motivated by the flocking and swarming behaviors in biological systems, while the second models opinion formation in social networks. In each setting, I define natural notions of convergence (to a ``flock" and to a ``consensus'', respectively), and study the convergence properties of each in the limit as $t \rightarrow \infty$. Specifically, I provide sufficient conditions for the convergence of both of the models, and conduct numerical experiments to study the resulting solutions.

Contributors

Agent

Created

Date Created
  • 2018