Matching Items (3)

Filtering by

Clear all filters

136785-Thumbnail Image.png

Exploring the Design of Vibrotactile Cues for Visio-Haptic Sensory Substitution

Description

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions.

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.

Contributors

Agent

Created

Date Created
2014-05

158278-Thumbnail Image.png

Generalized Domain Adaptation for Visual Domains

Description

Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of

Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of these models to new data is constrained by the domain gap. Many factors such as image background, image resolution, color, camera perspective and variations in the objects are responsible for the domain gap between the training data (source domain) and testing data (target domain). Domain adaptation algorithms aim to overcome the domain gap between the source and target domains and learn robust models that can perform well across both the domains.

This thesis provides solutions for the standard problem of unsupervised domain adaptation (UDA) and the more generic problem of generalized domain adaptation (GDA). The contributions of this thesis are as follows. (1) Certain and Consistent Domain Adaptation model for closed-set unsupervised domain adaptation by aligning the features of the source and target domain using deep neural networks. (2) A multi-adversarial deep learning model for generalized domain adaptation. (3) A gating model that detects out-of-distribution samples for generalized domain adaptation.

The models were tested across multiple computer vision datasets for domain adaptation.

The dissertation concludes with a discussion on the proposed approaches and future directions for research in closed set and generalized domain adaptation.

Contributors

Agent

Created

Date Created
2020

157758-Thumbnail Image.png

Deep domain fusion for adaptive image classification

Description

Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large

Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large corpora of annotated data in order to train task-specific visual recognition models. Despite significant advances made over the past decade, the fact remains collecting and annotating the data needed to successfully train a model is a prohibitively expensive endeavor. Moreover, these models are prone to rapid performance degradation when applied to data sampled from a different domain. Recent works in the development of deep adaptation networks seek to overcome these challenges by facilitating transfer learning between source and target domains. In parallel, the unification of dominant semi-supervised learning techniques has illustrated unprecedented potential for utilizing unlabeled data to train classification models in defiance of discouragingly meager sets of annotated data.

In this thesis, a novel domain adaptation algorithm -- Domain Adaptive Fusion (DAF) -- is proposed, which encourages a domain-invariant linear relationship between the pixel-space of different domains and the prediction-space while being trained under a domain adversarial signal. The thoughtful combination of key components in unsupervised domain adaptation and semi-supervised learning enable DAF to effectively bridge the gap between source and target domains. Experiments performed on computer vision benchmark datasets for domain adaptation endorse the efficacy of this hybrid approach, outperforming all of the baseline architectures on most of the transfer tasks.

Contributors

Agent

Created

Date Created
2019