Matching Items (2)
Filtering by

Clear all filters

155671-Thumbnail Image.png
Description
Multi-tenancy architecture (MTA) is often used in Software-as-a-Service (SaaS) and

the central idea is that multiple tenant applications can be developed using compo

nents stored in the SaaS infrastructure. Recently, MTA has been extended where

a tenant application can have its own sub-tenants as the tenant application acts

like a SaaS infrastructure. In other

Multi-tenancy architecture (MTA) is often used in Software-as-a-Service (SaaS) and

the central idea is that multiple tenant applications can be developed using compo

nents stored in the SaaS infrastructure. Recently, MTA has been extended where

a tenant application can have its own sub-tenants as the tenant application acts

like a SaaS infrastructure. In other words, MTA is extended to STA (Sub-Tenancy

Architecture ). In STA, each tenant application not only need to develop its own

functionalities, but also need to prepare an infrastructure to allow its sub-tenants to

develop customized applications. This dissertation formulates eight models for STA,

and proposes a Variant Point based customization model to help tenants and sub

tenants customize tenant and sub-tenant applications. In addition, this dissertation

introduces Crowd- sourcing to become the core of STA component development life

cycle. To discover fit tenant developers or components to help building and com

posing new components, dynamic and static ranking models are proposed. Further,

rank computation architecture is presented to deal with the case when the number of

tenants and components becomes huge. At last, an experiment is performed to prove

rank models and the rank computation architecture work as design.
ContributorsZhong, Peide (Author) / Davulcu, Hasan (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Huang, Dijiang (Committee member) / Tsai, Wei-Tek (Committee member) / Arizona State University (Publisher)
Created2017
154217-Thumbnail Image.png
Description
Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable,

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency.

This research introduces Modeling, Simulation and Analysis for Software-as-Service in Cloud. The researches cover the following topics: service modeling, policy specification, code generation, dynamic simulation, timing, event and log analysis. Moreover, the framework integrates current advantages of cloud: configurability, Multi-Tenancy, scalability and recoverability.

The following chapters are provided in the architecture:

Multi-Tenancy Simulation Software-as-a-Service.

Policy Specification for MTA simulation environment.

Model Driven PaaS Based SaaS modeling.

Dynamic analysis and dynamic calibration for timing analysis.

Event-driven Service-Oriented Simulation Framework.

LTBD: A Triage Solution for SaaS.
ContributorsLi, Wu (Author) / Tsai, Wei-Tek (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Ye, Jieping (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2015