Matching Items (3)
Filtering by

Clear all filters

152422-Thumbnail Image.png
Description
With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may

With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may lead adversaries to access critical information by circumventing security practices. In order to ensure security, considerable efforts have been spent to develop security regulations by facilitating security best-practices. Applying shared security standards to the system is critical to understand vulnerabilities and prevent well-known threats from exploiting vulnerabilities. However, many end users tend to change configurations of their systems without paying attention to the security. Hence, it is not straightforward to protect systems from being changed by unconscious users in a timely manner. Detecting the installation of harmful applications is not sufficient since attackers may exploit risky software as well as commonly used software. In addition, checking the assurance of security configurations periodically is disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks that can leverage the window between each security checks. Therefore, event-driven monitoring approach is critical to continuously assess security of a target system without ignoring a particular window between security checks and lessen the burden of exhausted task to inspect the entire configurations in the system. Furthermore, the system should be able to generate a vulnerability report for any change initiated by a user if such changes refer to the requirements in the standards and turn out to be vulnerable. Assessing various systems in distributed environments also requires to consistently applying standards to each environment. Such a uniformed consistent assessment is important because the way of assessment approach for detecting security vulnerabilities may vary across applications and operating systems. In this thesis, I introduce an automated event-driven security assessment framework to overcome and accommodate the aforementioned issues. I also discuss the implementation details that are based on the commercial-off-the-self technologies and testbed being established to evaluate approach. Besides, I describe evaluation results that demonstrate the effectiveness and practicality of the approaches.
ContributorsSeo, Jeong-Jin (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2014
152590-Thumbnail Image.png
Description
Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role hierarchy with hundreds of roles, and their associated privileges and users, systematically testing RBAC systems is crucial to ensure the security in various domains ranging from cyber-infrastructure to mission-critical applications. In this thesis, we introduce i) a security testing technique for RBAC systems considering the principle of maximum privileges, the structure of the role hierarchy, and a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision Diagram) based representation of RBAC security policy including RHMTBDD (Role Hierarchy MTBDD) to efficiently generate effective positive and negative security test cases; and iii) a security testing framework which takes an XACML-based RBAC security policy as an input, parses it into a RHMTBDD representation and then generates positive and negative test cases. We also demonstrate the efficacy of our approach through case studies.
ContributorsGupta, Poonam (Author) / Ahn, Gail-Joon (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2014
154567-Thumbnail Image.png
Description
With the software-defined networking trend growing, several network virtualization controllers have been developed in recent years. These controllers, also called network hypervisors, attempt to manage physical SDN based networks so that multiple tenants can safely share the same forwarding plane hardware without risk of being affected by or affecting other

With the software-defined networking trend growing, several network virtualization controllers have been developed in recent years. These controllers, also called network hypervisors, attempt to manage physical SDN based networks so that multiple tenants can safely share the same forwarding plane hardware without risk of being affected by or affecting other tenants. However, many areas remain unexplored by current network hypervisor implementations. This thesis presents and evaluates some of the features offered by network hypervisors, such as full header space availability, isolation, and transparent traffic forwarding capabilities for tenants. Flow setup time and throughput are also measured and compared among different network hypervisors. Three different network hypervisors are evaluated: FlowVisor, VeRTIGO and OpenVirteX. These virtualization tools are assessed with experiments conducted on three different testbeds: an emulated Mininet scenario, a physical single-switch testbed, and also a remote GENI testbed. The results indicate that network hypervisors bring SDN flexibility to network virtualization, making it easier for network administrators to define with precision how the network is sliced and divided among tenants. This increased flexibility, however, may come with the cost of decreased performance, and also brings additional risks of interoperability due to a lack of standardization of virtualization methods.
ContributorsStall Rechia, Felipe (Author) / Syrotiuk, Violet R. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2016