Matching Items (5)
Filtering by

Clear all filters

152179-Thumbnail Image.png
Description
As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite

As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite popular nowadays. They provide tools for modeling, simulation, verification and in some cases automatic code generation for desktop applications, embedded systems and robots. For real-world implementation of models on the actual hardware, those models should be converted into compilable machine code either manually or automatically. Due to the complexity of robotic systems, manual code translation from model to code is not a feasible optimal solution so we need to move towards automated code generation for such systems. MathWorks® offers code generation facilities called Coder® products for this purpose. However in order to fully exploit the power of model-based design and code generation tools for robotic applications, we need to enhance those software systems by adding and modifying toolboxes, files and other artifacts as well as developing guidelines and procedures. In this thesis, an effort has been made to propose a guideline as well as a Simulink® library, StateFlow® interface API and a C/C++ interface API to complete this toolchain for NAO humanoid robots. Thus the model of the hierarchical control architecture can be easily and properly converted to code and built for implementation.
ContributorsRaji Kermani, Ramtin (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2013
153193-Thumbnail Image.png
Description
As the number of cores per chip increases, maintaining cache coherence becomes prohibitive for both power and performance. Non Coherent Cache (NCC) architectures do away with hardware-based cache coherence, but they become difficult to program. Some existing architectures provide a middle ground by providing some shared memory in the hardware.

As the number of cores per chip increases, maintaining cache coherence becomes prohibitive for both power and performance. Non Coherent Cache (NCC) architectures do away with hardware-based cache coherence, but they become difficult to program. Some existing architectures provide a middle ground by providing some shared memory in the hardware. Specifically, the 48-core Intel Single-chip Cloud Computer (SCC) provides some off-chip (DRAM) shared memory some on-chip (SRAM) shared memory. We call such architectures Hybrid Shared Memory, or HSM, manycore architectures. However, how to efficiently execute multi-threaded programs on HSM architectures is an open problem. To be able to execute a multi-threaded program correctly on HSM architectures, the compiler must: i) identify all the shared data and map it to the shared memory, and ii) map the frequently accessed shared data to the on-chip shared memory. This work presents a source-to-source translator written using CETUS that identifies a conservative superset of all the shared data in a multi-threaded application and maps it to the shared memory such that it enables execution on HSM architectures.
ContributorsRawat, Tushar (Author) / Shrivastava, Aviral (Thesis advisor) / Dasgupta, Partha (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2014
154004-Thumbnail Image.png
Description
Cisco estimates that by 2020, 50 billion devices will be connected to the Internet. But 99% of the things today remain isolated and unconnected. Different connectivity protocols, proprietary access, varied device characteristics, security concerns are the main reasons for that isolated state. This project aims at designing and building a

Cisco estimates that by 2020, 50 billion devices will be connected to the Internet. But 99% of the things today remain isolated and unconnected. Different connectivity protocols, proprietary access, varied device characteristics, security concerns are the main reasons for that isolated state. This project aims at designing and building a prototype gateway that exposes a simple and intuitive HTTP Restful interface to access and manipulate devices and the data that they produce while addressing most of the issues listed above. Along with manipulating devices, the framework exposes sensor data in such a way that it can be used to create applications like rules or events that make the home smarter. It also allows the user to represent high-level knowledge by aggregating the low-level sensor data. This high-level representation can be considered as a property of the environment or object rather than the sensor itself which makes interpreting the values more intuitive and accessible.
ContributorsNair, Shankar (Author) / Lee, Yann-Hang (Thesis advisor) / Lee, Joohyung (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
154964-Thumbnail Image.png
Description
Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the environment such as occluded views or poor lighting conditions. Some

Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the environment such as occluded views or poor lighting conditions. Some methods also depend on high-precision meta-data which is not always available. This thesis proposes a complementary detection approach based on an entirely new source of information: the movement patterns of other nearby vehicles. This approach is robust to traditional sources of error, and may serve as a viable supplemental detection method. Several different classification models are presented for inferring traffic light status based on these patterns. Their performance is evaluated over real-world and simulation data sets, resulting in up to 97% accuracy in each set.
ContributorsCampbell, Joseph (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
154276-Thumbnail Image.png
Description
There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous and robust control for quadrotors. Recently researchers have been utilizing

There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) in the last decade, especially for quadrotors due to their nature of easy manipulation and simple structure. A lot of research has been done on achieving autonomous and robust control for quadrotors. Recently researchers have been utilizing linear temporal logic as mission specification language for robot motion planning due to its expressiveness and scalability. Several algorithms have been proposed to achieve autonomous temporal logic planning. Also, several frameworks are designed to compose those discrete planners and continuous controllers to make sure the actual trajectory also satisfies the mission specification. However, most of these works use first-order kinematic models which are not accurate when quadrotors fly at high speed and cannot fully utilize the potential of quadrotors.

This thesis work describes a new design for a hierarchical hybrid controller that is based on a dynamic model and seeks to achieve better performance in terms of speed and accuracy compared with some previous works. Furthermore, the proposed hierarchical controller is making progress towards guaranteed satisfaction of mission specification expressed in Linear Temporal Logic for dynamic systems. An event-driven receding horizon planner is also utilized that aims at distributed and decentralized planning for large-scale navigation scenarios. The benefits of this approach will be demonstrated using simulations results.
ContributorsZhang, Xiaotong (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2016