Matching Items (112)
Filtering by
- All Subjects: Computer Engineering
- Genre: Masters Thesis
- Creators: Arizona State University
- Member of: Theses and Dissertations

Cisco estimates that by 2020, 50 billion devices will be connected to the Internet. But 99% of the things today remain isolated and unconnected. Different connectivity protocols, proprietary access, varied device characteristics, security concerns are the main reasons for that isolated state. This project aims at designing and building a prototype gateway that exposes a simple and intuitive HTTP Restful interface to access and manipulate devices and the data that they produce while addressing most of the issues listed above. Along with manipulating devices, the framework exposes sensor data in such a way that it can be used to create applications like rules or events that make the home smarter. It also allows the user to represent high-level knowledge by aggregating the low-level sensor data. This high-level representation can be considered as a property of the environment or object rather than the sensor itself which makes interpreting the values more intuitive and accessible.

This report investigates the improvement in the transmission throughput, when fountain codes are used in opportunistic data routing, for a proposed delay tolerant network to connect remote and isolated communities in the Amazon region in Brazil, to the main city of that area. To extend healthcare facilities to the remote and isolated communities, on the banks of river Amazon in Brazil, the network [7] utilizes regularly schedules boats as data mules to carry data from one city to other.
Frequent thunder and rain storms, given state of infrastructure and harsh geographical terrain; all contribute to increase in chances of massages not getting delivered to intended destination. These regions have access to medical facilities only through sporadic visits from medical team from the main city in the region, Belem. The proposed network uses records for routine clinical examinations such as ultrasounds on pregnant women could be sent to the doctors in Belem for evaluation.
However, due to the lack of modern communication infrastructure in these communities and unpredictable boat schedules due to delays and breakdowns, as well as high transmission failures due to the harsh environment in the region, mandate the design of robust delay-tolerant routing algorithms. The work presented here incorporates the unpredictability of the Amazon riverine scenario into the simulation model - accounting for boat mechanical failure in boats leading to delays/breakdowns, possible decrease in transmission speed due to rain and individual packet losses.
Extensive simulation results are presented, to evaluate the proposed approach and to verify that the proposed solution [7] could be used as a viable mode of communication, given the lack of available options in the region. While the simulation results are focused on remote healthcare applications in the Brazilian Amazon, we envision that our approach may also be used for other remote applications, such as distance education, and other similar scenarios.

With the growth of IT products and sophisticated software in various operating systems, I observe that security risks in systems are skyrocketing constantly. Consequently, Security Assessment is now considered as one of primary security mechanisms to measure assurance of systems since systems that are not compliant with security requirements may lead adversaries to access critical information by circumventing security practices. In order to ensure security, considerable efforts have been spent to develop security regulations by facilitating security best-practices. Applying shared security standards to the system is critical to understand vulnerabilities and prevent well-known threats from exploiting vulnerabilities. However, many end users tend to change configurations of their systems without paying attention to the security. Hence, it is not straightforward to protect systems from being changed by unconscious users in a timely manner. Detecting the installation of harmful applications is not sufficient since attackers may exploit risky software as well as commonly used software. In addition, checking the assurance of security configurations periodically is disadvantageous in terms of time and cost due to zero-day attacks and the timing attacks that can leverage the window between each security checks. Therefore, event-driven monitoring approach is critical to continuously assess security of a target system without ignoring a particular window between security checks and lessen the burden of exhausted task to inspect the entire configurations in the system. Furthermore, the system should be able to generate a vulnerability report for any change initiated by a user if such changes refer to the requirements in the standards and turn out to be vulnerable. Assessing various systems in distributed environments also requires to consistently applying standards to each environment. Such a uniformed consistent assessment is important because the way of assessment approach for detecting security vulnerabilities may vary across applications and operating systems. In this thesis, I introduce an automated event-driven security assessment framework to overcome and accommodate the aforementioned issues. I also discuss the implementation details that are based on the commercial-off-the-self technologies and testbed being established to evaluate approach. Besides, I describe evaluation results that demonstrate the effectiveness and practicality of the approaches.

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.

Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan.

Many real-time vision applications require accurate estimation of optical flow. This problem is quite challenging due to extremely high computation and memory requirements. This thesis focuses on designing low complexity dense optical flow algorithms.
First, a new method for optical flow that is based on Semi-Global Matching (SGM), a popular dynamic programming algorithm for stereo vision, is presented. In SGM, the disparity of each pixel is calculated by aggregating local matching costs over the entire image to resolve local ambiguity in texture-less and occluded regions. The proposed method, Neighbor-Guided Semi-Global Matching (NG-fSGM) achieves significantly less complexity compared to SGM, by 1) operating on a subset of the search space that has been aggressively pruned based on neighboring pixels’ information, 2) using a simple cost aggregation function, 3) approximating aggregated cost array and embedding pixel-wise matching cost computation and flow computation in aggregation. Evaluation on the Middlebury benchmark suite showed that, compared to a prior SGM extension for optical flow, the proposed basic NG-fSGM provides robust optical flow with 0.53% accuracy improvement, 40x reduction in number of operations and 6x reduction in memory size. To further reduce the complexity, sparse-to-dense flow estimation method is proposed. The number of operations and memory size are reduced by 68% and 47%, respectively, with only 0.42% accuracy degradation, compared to the basic NG-fSGM.
A parallel block-based version of NG-fSGM is also proposed. The image is divided into overlapping blocks and the blocks are processed in parallel to improve throughput, latency and power efficiency. To minimize the amount of overlap among blocks with minimal effect on the accuracy, temporal information is used to estimate a flow map that guides flow vector selections for pixels along block boundaries. The proposed block-based NG-fSGM achieves significant reduction in complexity with only 0.51% accuracy degradation compared to the basic NG-fSGM.

Historically, wireless communication devices have been developed to process one specific waveform. In contrast, a modern cellular phone supports multiple waveforms corresponding to LTE, WCDMA(3G) and 2G standards. The selection of the network is controlled by software running on a general purpose processor, not by the user. Now, instead of selecting from a set of complete radios as in software controlled radio, what if the software could select the building blocks based on the user needs. This is the new software-defined flexible radio which would enable users to construct wireless systems that fit their needs, rather than forcing to use from a small set of pre-existing protocols.
To develop and implement flexible protocols, a flexible hardware very similar to a Software Defined Radio (SDR) is required. In this thesis, the Intel T2200 board is chosen as the SDR platform. It is a heterogeneous platform with ARM, CEVA DSP and several accelerators. A wide range of protocols is mapped onto this platform and their performance evaluated. These include two OFDM based protocols (WiFi-Lite-A, WiFi-Lite-B), one DFT-spread OFDM based protocol (SCFDM-Lite) and one single carrier based protocol (SC-Lite). The transmitter and receiver blocks of the different protocols are first mapped on ARM in the T2200 board. The timing results show that IFFT, FFT, and Viterbi decoder blocks take most of the transmitter and receiver execution time and so in the next step these are mapped onto CEVA DSP. Mapping onto CEVA DSP resulted in significant execution time savings. The savings for WiFi-Lite-A were 60%, for WiFi-Lite-B were 64%, and for SCFDM-Lite were 71.5%. No savings are reported for SC-Lite since it was not mapped onto CEVA DSP.
Significant reduction in execution time is achieved for WiFi-Lite-A and WiFi-Lite-B protocols by implementing the entire transmitter and receiver chains on CEVA DSP. For instance, for WiFi-Lite-A, the savings were as large as 90%. Such huge savings are because the entire transmitter or receiver chain are implemented on CEVA and the timing overhead due to ARM-CEVA communication is completely eliminated. Finally, over-the-air testing was done for WiFi-Lite-A and WiFi-Lite-B protocols. Data was sent over the air using one Intel T2200 WBS board and received using another Intel T2200 WBS board. The received frames were decoded with no errors, thereby validating the over-the-air-communications.

The last decade has witnessed a paradigm shift in computing platforms, from laptops and servers to mobile devices like smartphones and tablets. These devices host an immense variety of applications many of which are computationally expensive and thus are power hungry. As most of these mobile platforms are powered by batteries, energy efficiency has become one of the most critical aspects of such devices. Thus, the energy cost of the fundamental arithmetic operations executed in these applications has to be reduced. As voltage scaling has effectively ended, the energy efficiency of integrated circuits has ceased to improve within successive generations of transistors. This resulted in widespread use of Application Specific Integrated Circuits (ASIC), which provide incredible energy efficiency. However, these are not flexible and have high non-recurring engineering (NRE) cost. Alternatively, Field Programmable Gate Arrays (FPGA) offer flexibility to implement any application, but at the cost of higher area and energy compared to ASIC.
In this work, a spatially programmable architecture customized for image processing applications is proposed. The intent is to bridge the efficiency gap between ASICs and FPGAs, by offering FPGA-like flexibility and ASIC-like energy efficiency. This architecture minimizes the energy overheads in FPGAs, which result from the use of fine-grained programming style and global interconnect. It is flexible compared to an ASIC and can accommodate multiple applications.
The main contribution of the thesis is the feasibility analysis of the data path of this architecture, customized for image processing applications. The data path is implemented at the register transfer level (RTL), and the synthesis results are obtained in 45nm technology cell library from a leading foundry. The results of image-processing applications demonstrate that this architecture is within a factor of 10x of the energy and area efficiency of ASIC implementations.

Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish their battery reserves, using a contact charging point. This system is designed to work with all types of rechargeable batteries, focusing on Lithium Polymer (LiPo) packs, that incorporate a battery management system for increased reliability. The project also explores optimization methods for fleets of UAV systems, to increase charging efficiency and extend battery lifespans. Each component of this project was first designed and tested in computer simulation. Following positive feedback and results, prototypes for each part of this system were developed and rigorously tested. Results show that the contact charging method is able to charge LiPo batteries at a 1-C rate, which is the industry standard rate, maintaining the same safety and efficiency standards as modern day direct connection chargers. Control software for these base stations was also created, to be integrated with a fleet management system, and optimizes UAV charge levels and distribution to extend LiPo battery lifetimes while still meeting expected mission demand. Each component of this project (hardware/software) was designed for manufacturing and implementation using industry standard tools, making it ideal for large-scale implementations. This system has been successfully tested with a fleet of UAV systems at Arizona State University, and is currently being integrated into an Arizona smart city environment for deployment.

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.
To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.