Matching Items (5)
Filtering by

Clear all filters

151428-Thumbnail Image.png
Description
Mycorrhizal fungi form symbiotic relationships with plant roots, increasing nutrient and water availability to plants and improving soil stability. Mechanical disturbance of soil has been found to reduce mycorrhizal inoculum in soils, but findings have been inconsistent. To examine the impact of restoration practices on riparian mycorrhizal inoculum potential, soil

Mycorrhizal fungi form symbiotic relationships with plant roots, increasing nutrient and water availability to plants and improving soil stability. Mechanical disturbance of soil has been found to reduce mycorrhizal inoculum in soils, but findings have been inconsistent. To examine the impact of restoration practices on riparian mycorrhizal inoculum potential, soil samples were collected at the Tres Rios Ecosystem Restoration and Flood Control Project located at the confluence of the Salt, Gila, and Agua Fria rivers in central Arizona. The project involved the mechanical removal of invasive Tamarix spp.( tamarisk, salt cedar) and grading prior to revegetation. Soil samples were collected from three stages of restoration: pre-restoration, soil banks with chipped vegetation, and in areas that had been graded in preparation for revegetation. Bioassay plants were grown in the soil samples and roots analyzed for arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) infection percentages. Vegetations measurements were also taken for woody vegetation at the site. The mean number of AM and EM fungal propagules did not differ between the three treatment area, but inoculum levels did differ between AM and EM fungi with AM fungal propagules detected at moderate levels and EM fungi at very low levels. These differences may have been related to availability of host plants since AM fungi form associations with a variety of desert riparian forbs and grasses and EM fungi only form associations with Populus spp. and Salix spp. which were present at the site but at low density and canopy cover. Prior studies have also found that EM fungi may be more affected by tamarisk invasions than AM fungi. Our results were similar to other restoration projects for AM fungi suggesting that it may not be necessary to add AM fungi to soil prior to planting native vegetation because of the moderate presence of AM fungi even in soils dominated by tamarisk and exposed to soil disturbance during the restoration process. In contrast when planting trees that form EM associations, it may be beneficial to augment soil with EM fungi collected from riparian areas or to pre-inoculate plants prior to planting.
ContributorsArnold, Susanne (Author) / Stutz, Jean (Thesis advisor) / Alford, Eddie (Committee member) / Green, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
150052-Thumbnail Image.png
Description
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships.

The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships. The first step towards understanding the effects of spatial heterogeneity on the BEF relationships is to quantify spatial heterogeneity characteristics of key variables of biodiversity and ecosystem functioning, and identify the spatial relationships among these variables. The goal of our research was to address the following research questions based on data collected in 2005 (corresponding to the year when the initial site background information was conducted) and in 2008 (corresponding to the year when removal treatments were conducted) from the Inner Mongolia Grassland Removal Experiment (IMGRE) located in northern China: 1) What are the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass in a natural grassland community of Inner Mongolia, China? How are they related spatially? and 2) How do removal treatments affect the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass? Is there any change for their spatial correlations after removal treatments? Our results showed that variables of biodiversity and ecosystem functioning in the natural grassland community would present different spatial patterns, and they would be spatially correlated to each other closely. Removal treatments had a significant effect on spatial structures and spatial correlations of variables, compared to those prior to the removal treatments. The differences in spatial pattern of plant and soil variables and their correlations before and after the biodiversity manipulation may not imply that the results from BEF experiments like IMGRE are invalid. However, they do suggest that the possible effects of spatial heterogeneity on the BEF relationships should be critically evaluated in future studies.
ContributorsYuan, Fei (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew T. (Committee member) / Rowe, Helen I (Committee member) / Arizona State University (Publisher)
Created2011
153844-Thumbnail Image.png
Description
As a result of growing populations and uncertain resource availability, urban areas are facing pressure from federal and state agencies, as well as residents, to promote conservation programs that provide services for people and mitigate environmental harm. Current strategies in US cities aim to reduce the impact of municipal and

As a result of growing populations and uncertain resource availability, urban areas are facing pressure from federal and state agencies, as well as residents, to promote conservation programs that provide services for people and mitigate environmental harm. Current strategies in US cities aim to reduce the impact of municipal and household resource use, including programs to promote water conservation. One common conservation program incentivizes the replacement of water-intensive turfgrass lawns with landscapes that use less water consisting of interspersed drought-tolerant shrubs and trees with rock or mulch groundcover (e.g. xeriscapes, rain gardens, water-wise landscapes). A handful of previous studies in experimental landscapes have shown that converting a turfgrass yard to a shrub-dominated landscape has the potential to increase rates of nitrate (NO3-) leaching. However, no studies have examined the drivers or patterns across diverse management practices. In this research, I compared soil nutrient retention and cycling in turfgrass and lawn-alternative xeriscaped yards along a chronosequence of time since land cover change in Tempe, Arizona, in the semi-arid US Southwest. Soil inorganic extractable nitrogen (N) pools were greater in xeriscapes compared to turfgrass lawns. On average xeriscapes contained 2.5±0.4 g NO3--N/m2 in the first 45 cm of soil, compared to 0.6±0.7 g NO3--N/m2 in lawns. Soil NO3--N pools in xeriscaped yards also varied significantly with time: pools were largest 9-13 years after cover change and declined to levels comparable to turfgrass at 18-21 years. Variation in soil extractable NO3--N with landscape age was strongly influenced by management practices that control soil water availability, including shrub cover, the presence of sub-surface plastic sheeting, and the frequency of irrigation. This research is the first to explore the ecological outcomes and temporal dynamics of an increasingly common, ‘sustainable’ land use practice that is universally promoted in US cities. Our findings show that transitioning from turfgrass to water-efficient residential landscaping can lead to an accumulation of NO3--N that may be lost from the soil rooting zone over time, through leaching following irrigation or rainfall. These results have implications for best management practices to optimize the benefits of water-conserving residential yards.
ContributorsHeavenrich, Hannah (Author) / Hall, Sharon J (Thesis advisor) / Larson, Kelli L (Committee member) / Potaki, Diane E (Committee member) / Arizona State University (Publisher)
Created2015
149482-Thumbnail Image.png
Description
ABSTRACT The February 2008 study of a Snowflake, Arizona site measured changes in soil organic carbon, total nitrogen, extractable phosphorus, and soil moisture, to determine what affect One-seed Juniper (Juniperus monosperma) trees have on surrounding soil, thus affecting native grass growth. Increasing juniper densities in grasslands also decrease populations of

ABSTRACT The February 2008 study of a Snowflake, Arizona site measured changes in soil organic carbon, total nitrogen, extractable phosphorus, and soil moisture, to determine what affect One-seed Juniper (Juniperus monosperma) trees have on surrounding soil, thus affecting native grass growth. Increasing juniper densities in grasslands also decrease populations of some grassland bird species. Measurements were taken each meter along a twelve meter line transect, moving from juniper trees, through a bare soil area and into a grassland. Non-linear relationships were examined, in regard to distance from the tree and juniper root mass. Relationships were examined to determine any affect of the juniper tree on soil characteristics along the transect. Organic carbon decreased as distance increased from the trees (F=4.25, df=46, p=0.020). Soil moisture increased with distance from the trees (F=5.42, df=46, p=0.008), and juniper root mass, of roots less than 1 mm diameter, significantly decreased with distance away from the trees (F=11.29, df=46, p=0.0001). Total nitrogen and extractable phosphorus did not significantly change with distance from the tree, or presence of juniper roots. This data is important as grassland restoration projects rely on the availability of soil nutrients and water for reestablishment of native grass species.
ContributorsWeller, Christopher (Author) / Green, Douglas (Thesis advisor) / Miller, William H. (Committee member) / Alford, Edward (Committee member) / Arizona State University (Publisher)
Created2010
149563-Thumbnail Image.png
Description
This thesis explores the independent effects of the manipulation of rocks into alignments, prehistoric farming, and season on soil properties in two areas with a history of prehistoric agriculture in central Arizona, Pueblo la Plata within the Agua Fria National Monument (AFNM), and an archaeological site north of the Phoenix

This thesis explores the independent effects of the manipulation of rocks into alignments, prehistoric farming, and season on soil properties in two areas with a history of prehistoric agriculture in central Arizona, Pueblo la Plata within the Agua Fria National Monument (AFNM), and an archaeological site north of the Phoenix basin along Cave Creek (CC). Soil properties, annual herbaceous biomass and the physical properties of alignments and surface soils were measured and compared across the landscape, specifically on: 1) agricultural rock alignments that were near the archaeological site 2) geologically formed rock alignments that were located 0.5-1 km away from settlements; and 3) areas both near and far from settlements where rock alignments were absent. At AFNM, relatively well-built rock alignments have altered soil properties and processes while less-intact alignments at CC have left few legacies.
ContributorsTrujillo, Jolene Eve (Author) / Hall, Sharon J (Thesis advisor) / Collins, Scott L. (Committee member) / Spielmann, Katherine A. (Committee member) / Arizona State University (Publisher)
Created2011