Matching Items (1)

136660-Thumbnail Image.png

Evaluating the feasibility of molasses as an electron donor for enhanced bioremediation of chlorinated solvents

Description

Lactate and methanol have been the most commonly used electron donors in the Krajmalnik-Brown laboratory for efficient microbial dechlorination of trichloroethene (TCE). Our goal was to assess the technical and

Lactate and methanol have been the most commonly used electron donors in the Krajmalnik-Brown laboratory for efficient microbial dechlorination of trichloroethene (TCE). Our goal was to assess the technical and economic feasibility of molasses and ethanol, two alternative electron donors by evaluating their costs and ability support complete TCE dechlorination to ethene. First, ethanol and molasses, with and without methanol, were evaluated for their abilities to support complete dechlorination in batch serum bottles. Molasses, the cheapest alternative, supported a similar dechlorination performance to lactate in batch experiments, so we then used it in an upflow anaerobic bioreactor (UABR) to test its ability to support rapid dechlorination in this continuous system. Molasses supported 88% TCE conversion to ethene at a hydraulic retention time (HRT) of 13 hours after 80 days of operation in continuous mode. Compared to the UABR operated previously using lactate and methanol, molasses led to a reduction of TCE conversion to ethene, and a possible increase in time required to produce culture. Additionally, when molasses was used as the electron donor, we encountered new difficulties in the operation of the UABR, such as drastic pH changes. Therefore, I conclude that the savings from using molasses is outweighed by the costs associated with the reduction in dechlorination performance and increase in reactor maintenance. I recommend that lactate and methanol continue to be used as the electron donors in the Krajmalnik- Brown dechlorination lab to support fast-rate and cost-effective production of dechlorinating culture in an UABR. Because molasses supported fast rates of dechlorination in the batch experiment, however, it is potentially a better option than lactate and methanol for batch production of culture or for biostimulation, where the aquifer resembles a batch system. I recommend that further studies be done to reach a general conclusion about the feasibility of molasses as an electron donor for other enhanced bioremediation projects.

Contributors

Agent

Created

Date Created
  • 2014-12