Matching Items (14)

136535-Thumbnail Image.png

Adsorption and Release of Surfactant into and from Multifunctional Zwitterionic Poly(NIPAm-co-DMAPMA-co-AAc) Microgel Particles

Description

Monodispersed zwitterionic microgel (ZI-MG) particles that undergo an extensive, reversible change in volume in response to environmental stimuli such as pH and temperature were synthesized. These aqueous ZI-MG dispersions exhibited

Monodispersed zwitterionic microgel (ZI-MG) particles that undergo an extensive, reversible change in volume in response to environmental stimuli such as pH and temperature were synthesized. These aqueous ZI-MG dispersions exhibited a minimum hydrodynamic diameter value at an adjustable isoelectric point(IEP). In addition, the study elucidates the controlled uptake and release of ionic and nonionic surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the colloidal polymer networks are explained in terms of their binding interactions.

Contributors

Agent

Created

Date Created
  • 2015-05

156795-Thumbnail Image.png

New acid medium sol-gel synthesis of metal phosphates

Description

New sol-gel routes based on peroxo complexes of early transition metals in a highly acidic medium were developed, to prepare metal oxide phosphates that feature structural protons. A sol-gel synthetic

New sol-gel routes based on peroxo complexes of early transition metals in a highly acidic medium were developed, to prepare metal oxide phosphates that feature structural protons. A sol-gel synthetic route was chosen because it allows atomic level mixing of precursors and lower heating temperatures, which are preferable in exploring metastable phases. Titanium and molybdenum sol-gel chemistries were the focus of the initial studies and the synthesis of Ti1-xMoxP2O7 (x = 0 – 0.5) and Mo1-yTiyP2O8-y (y = 0 – 0.4) type metal oxide phosphates were explored. For the synthesis of the metal oxide phosphates, hydrogen peroxide was employed to prepare the respective precursor solutions. The peroxide ligand suppressed the immediate precipitation of metal cations in aqueous medium, by coordinating to Ti4+ and Mo6+ ions, and produced a soft wet-gel following polycondensation. Phosphoric acid was used to acidify the reaction medium and to provide protons and phosphate ions as structural components. From this synthetic route, a series of Ti1-xMoxP2O7 (x = 0 – 0.5) and Mo1-yTiyP2O8-y (y = 0 – 0.4) crystalline compounds, with various degrees of purity, were synthesized. For x = 0 and y = 0, the crystalline compounds TiP2O7 and MoP2O8 were produced, respectively, after calcining at 600 °C.

In pursuit of new metastable molybdenum oxide phosphate compounds, peroxo-molybdenum precursor mixtures with different molar ratios were treated gently by low-temperature heating. After controlled drying in a lab oven, MoO2(H2O)(HPO4) crystals were obtained as a highly crystalline pure product instead of a gel. The dissolution of MoO2(H2O)(HPO4) in water and precipitation with a CsCl solution produced a new crystalline compound with a cubic unit cell (a = 11.8(2) Å). Further studies will lead to crystal structure determination and elucidation of the aqueous chemistry of MoO2(H2O)(HPO4).

Contributors

Agent

Created

Date Created
  • 2018

154058-Thumbnail Image.png

Environmentally responsive hydrogels: development and integration with hard materials

Description

Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many

Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus, there is a need to integrate soft and hard materials for the advancement of environmental-ly responsive materials.

Conventional hydrogels lack good mechanical properties and have inherently slow response time, important characteristics which must be improved before the hydrogels can be integrated with silicon. In the present dissertation work, both these important attrib-utes of a temperature responsive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm), were improved by adopting a low temperature polymerization process and adding a sili-cate compound, tetramethyl orthosilicate. Furthermore, the transition temperature was modulated by adjusting the media quality in which the hydrogels were equilibrated, e.g. by adding a co-solvent (methanol) or an anionic surfactant (sodium dodecyl sulfate). In-terestingly, the results revealed that, based on the hydrogels’ porosity, there were appre-ciable differences when the PNIPAAm hydrogels interacted with the media molecules.

Next, an adhesion mechanism was developed in order to transfer silicon thin film onto the hydrogel surface. This integration provided a means of mechanical buckling of the thin silicon film due to changes in environmental stimuli (e.g., temperature, pH). We also investigated how novel transfer printing techniques could be used to generate pat-terned deformation of silicon thin film when integrated on a planar hydrogel substrate. Furthermore, we explore multilayer hybrid hydrogel structures formed by the integration of different types of hydrogels that have tunable curvatures under the influence of differ-ent stimuli. Silicon thin film integration on such tunable curvature substrates reveal char-acteristic reversible buckling of the thin film in the presence of multiple stimuli.

Finally, different approaches of incorporating visible light response in PNIPAAm are discussed. Specifically, a chemical chromophore- spirobenzopyran was synthesized and integrated through chemical cross-linking into the PNIPAAm hydrogels. Further, methods of improving the light response and mechanical properties were also demonstrat-ed. Interestingly, such a system was shown to have potential application as light modulated topography altering system

Contributors

Agent

Created

Date Created
  • 2015

154071-Thumbnail Image.png

Development of environmentally responsive multifunctional microgel particles: synthesis, characterization and applications

Description

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.

Contributors

Agent

Created

Date Created
  • 2015

154363-Thumbnail Image.png

High-throughput platforms for tumor dormancy-relapse and biomolecule binding using aminoglycoside-derived hydrogels

Description

Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost

Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug discovery, development and validation. Ablation of dormant cancer will not only completely remove the cancer disease, but also will prevent any future recurrence. A novel hydrogel, Amikagel, was developed by crosslinking of aminoglycoside amikacin with a polyethylene glycol crosslinker. Aminoglycosides contain abundant amount of easily conjugable groups such as amino and hydroxyl moieties that were crosslinked to generate the hydrogel. Cancer cells formed 3D spheroidal structures that underwent near complete dormancy on Amikagel high-throughput drug discovery platform. Due to their dormant status, conventional anticancer drugs such as mitoxantrone and docetaxel that target the actively dividing tumor phenotype were found to be ineffective. Hypothesis driven rational drug discovery approaches were used to identify novel pathways that could sensitize dormant cancer cells to death. Strategies were used to further accelerate the dormant cancer cell death to save time required for the therapeutic outcome.

Amikagel’s properties were chemo-mechanically tunable and directly impacted the outcome of tumor dormancy or relapse. Exposure of dormant spheroids to weakly stiff and adhesive formulation of Amikagel resulted in significant relapse, mimicking the response to changes in extracellular matrix around dormant tumors. Relapsed cells showed significant differences in their metastatic potential compared to the cells that remained dormant after the induction of relapse. Further, the dissertation discusses the use of Amikagels as novel pDNA binding resins in microbead and monolithic formats for potential use in chromatographic purifications. High abundance of amino groups allowed their utilization as novel anion-exchange pDNA binding resins. This dissertation discusses Amikagel formulations for pDNA binding, metastatic cancer cell separation and novel drug discovery against tumor dormancy and relapse.

Contributors

Agent

Created

Date Created
  • 2016

157827-Thumbnail Image.png

Synthesis and applications of nanostructured zeolites from geopolymer chemistry

Description

Nanostructured zeolites, in particular nanocrystalline zeolites, are of great interest due to their efficient use in conventional catalysis, separations, and emerging applications. Despite the recent advances, fewer than 20

Nanostructured zeolites, in particular nanocrystalline zeolites, are of great interest due to their efficient use in conventional catalysis, separations, and emerging applications. Despite the recent advances, fewer than 20 zeolite framework types have been synthesized in the form of nanocrystallites and their scalable synthesis has yet to be developed and understood. Geopolymers, claimed to be “amorphous cousins of zeolites”, are a class of ceramic-like aluminosilicate materials with prominent application in construction due to their unique chemical and mechanical properties. Despite the monolith form, geopolymers are fundamentally nanostructured materials and contain zeolite nanocrystallites.

Herein, a new cost-effective and scalable synthesis of various types of nanocrystalline zeolites based on geopolymer chemistry is presented. The study includes the synthesis of highly crystalline discrete nanorods of a CAN zeolite framework structure that had not been achieved hitherto, the exploration of the Na−Al−Si−H2O kinetic phase diagram of hydrogels that gives SOD, CAN and FAU nanocrystalline zeolites, and the discovery of a unique formation mechanism of highly crystalline nanostructured FAU zeolite with intermediate gel products that possess an unprecedented uniform distribution of elements. This study demonstrated the possibility of using high-concentration hydrogels for the synthesis of nanocrystalline zeolites of additional framework structures.

Moreover, a comprehensive study on nanostructured FAU zeolites ion-exchanged with Ag+, Zn2+, Cu2+ and Fe2+ for antibacterial applications is presented, which comprises metal ion release kinetics, antibacterial properties, and cytotoxicity. For the first time, superior metal ion release performance was confirmed for the nanostructured zeolites compared to their micron-sized counterparts. The metal ion-exchanged FAU nanostructured zeolites were established as new effective antibacterial materials featuring their unique physiochemical, antibacterial, and cytotoxic properties.

Contributors

Agent

Created

Date Created
  • 2019

150194-Thumbnail Image.png

Pyrogel synthesis: an experimental analysis and simulation

Description

Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and

Processed pyro-gel contains castor oil with solid component of boehmite (Al-OOH). The pyro-gel is synthesized by heat to convert boehmite to gamma-Al2O3 and to a certain extent alpha-Al2O3 nano-particles and castor oil into carbon residue. The effect of heat on pyro-gel is analyzed in a series of experiments using two burning chambers with the initial temperature as the main factor. The obtained temperature distribution profiles are studied and it is observed that the gel behaves very close to the theoretical prediction under heat. The carbon residue with Al2O3 is then processed for twelve hours and then analyzed to obtain the pore distribution of the Al2O3 nano-particles and the relation between the pore volume and the pre-heat temperature is analyzed. The obtained pore distribution shows the pore volume of Al2O3 nano-particles has direct relation to the pre-heat temperature. The experimental process involving the cylindrical reactor is simulated by using a finite rate chemistry eddy-dissipation model in a non-premixed and a porous mesh. The temperature distribution profile of the processed gel for both the meshes is obtained and a comparison is done with the data obtained in the experimental analysis. The temperature distribution obtained from the simulations show they follow a very similar profile to the temperature distribution obtained from experimental analysis, thus confirming the accuracy of both the models. The variation in numerical values between the experimental and simulation analysis is discussed. A physical model is proposed to determine the pore formation based on the temperature distribution obtained from experimental analysis and simulation.

Contributors

Agent

Created

Date Created
  • 2010

152914-Thumbnail Image.png

Development of an ECM-mimetic, electrospun hydrogel scaffold for soft tissue repair application

Description

The objective of this research is to develop a biocompatible scaffold based on dextran and poly acrylic acid (PAA) with the potential to be used for soft tissue repair. In

The objective of this research is to develop a biocompatible scaffold based on dextran and poly acrylic acid (PAA) with the potential to be used for soft tissue repair. In this thesis, physical and chemical properties of the scaffold were investigated. The scaffolds were made using electrospinning and cross-linked under high temperature. After heat treatment, Scanning Electron Microscope (SEM) was used to observe the structures of these scaffolds. Fourier transform infrared spectroscopy (FTIR) was used to measure the cross-linking level of scaffold samples given different times of heat treatment by detecting and comparing the newly formed ester bonds. Single-walled carbon nanotubes (SWCNT) were added to enhance the mechanical properties of dextran-PAA scaffolds. Attachment of NIH-3T3 fibroblast cells to the scaffold and the response upon implantation into rabbit vaginal tissue were also evaluated to investigate the performance of SWCNT dextran-PAA scaffold. SEM was then used to characterize morphology of fibroblast cells and rabbit tissues. The results suggest that SWCNT could enhance cell attachment, distribution and spreading performance of dextran-PAA scaffold.

Contributors

Agent

Created

Date Created
  • 2014

151000-Thumbnail Image.png

Mechanics analysis of coupled large deformation and diffusion in gels

Description

Gels are three-dimensional polymer networks with entrapped solvent (water etc.). They bear amazing features such as stimuli-responsive (temperature, PH, electric field etc.), high water content and biocompatibility and thus find

Gels are three-dimensional polymer networks with entrapped solvent (water etc.). They bear amazing features such as stimuli-responsive (temperature, PH, electric field etc.), high water content and biocompatibility and thus find a lot of applications. To understand the complex physics behind gel's swelling phenomenon, it is important to build up fundamental mechanical model and extend to complicated cases. In this dissertation, a coupled large deformation and diffusion model regarding gel's swelling behavior is presented. In this model, free-energy of the total gel is constituted by polymer stretching energy and polymer-solvent mixing energy. In-house nonlinear finite element code is implemented with fast computational capability. Complex phenomenon such as buckling and healing of cracked gel by swelling are studied. Due to the wide coverage of polymeric materials and solvents, solvent diffusion in gels not only follows Fickian diffusion law where concentration map is continuous but also follows non-Fickian diffusion law where concentration map shows high gradient. Phenomenological model with viscoelastic polymer constitutive and concentration dependent diffusivity is created. The model well captures this special diffusion phenomenon such as sharp diffusion front and distinctive swollen and unswollen region.

Contributors

Agent

Created

Date Created
  • 2012

151022-Thumbnail Image.png

Development of stimuli-responsive hydrogels integrated with ultra-thin silicon ribbons for stretchable and intelligent devices

Description

Electronic devices based on various stimuli responsive polymers are anticipated to have great potential for applications in innovative electronics due to their inherent intelligence and flexibility. However, the electronic properties

Electronic devices based on various stimuli responsive polymers are anticipated to have great potential for applications in innovative electronics due to their inherent intelligence and flexibility. However, the electronic properties of these soft materials are poor and the applications have been limited due to their weak compatibility with functional materials. Therefore, the integration of stimuli responsive polymers with other functional materials like Silicon is strongly demanded. Here, we present successful strategies to integrate environmentally sensitive hydrogels with Silicon, a typical high-performance electronic material, and demonstrate the intelligent and stretchable capability of this system. The goal of this project is to develop integrated smart devices comprising of soft stimuli responsive polymeric-substrates with conventional semiconductor materials such as Silicon, which can respond to various external stimuli like pH, temperature, light etc. Specifically, these devices combine the merits of high quality crystalline semiconductor materials and the mechanical flexibility/stretchability of polymers. Our innovative system consists of ultra-thin Silicon ribbons bonded to an intelligently stretchable substrate which is intended to interpret and exert environmental signals and provide the desired stress relief. As one of the specific examples, we chose as a substrate the standard thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel with fast response and large deformation. In order to make the surface of the hydrogel waterproof and smooth for high-quality Silicon transfer, we introduced an intermediate layer of poly(dimethylsiloxane) (PDMS) between the substrate and the Silicon ribbons. The optical microscope results have shown that the system enables stiff Silicon ribbons to become adaptive and drivable by the soft environmentally sensitive substrate. Furthermore, we pioneered the development of complex geometries with two different methods: one is using stereolithography to electronically control the patterns and build up their profiles layer by layer; the other is integrating different multifunctional polymers. In this report, we have designed a bilayer structure comprising of a PNIPAAm hydrogel and a hybrid hydrogel of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA). Typical variable curvatures can be obtained by the hydrogels with different dimensional expansion. These structures hold interesting possibilities in the design of electronic devices with tunable curvature.

Contributors

Agent

Created

Date Created
  • 2012