Matching Items (2)
Filtering by

Clear all filters

150520-Thumbnail Image.png
Description
This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A

This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A methodology is presented to estimate the outage probability of wind generators while incorporating their reduced power output levels at low wind speeds. Subsequently, power system reliability is assessed by calculating the loss of load probability (LOLP) and the effect of wind integration on the overall system is analyzed. Actual generation and load data of the Texas power system in 2008 are used to construct a test case. To demonstrate the robustness of the method, relia-bility studies have been conducted for a fairly constant as well as for a largely varying wind generation profile. Further, the case of increased wind generation penetration level has been simulated and comments made about the usability of the proposed method to aid in power system planning in scenarios of future expansion of wind energy infrastructure. The second part of this thesis explains the development of a graphic user interface (GUI) to demonstrate the operation of a grid connected doubly fed induction generator (DFIG). The theory of DFIG and its back-to-back power converter is described. The GUI illustrates the power flow, behavior of the electrical circuit and the maximum power point tracking of the machine for a variable wind speed input provided by the user. The tool, although developed on MATLAB software platform, has been constructed to work as a standalone application on Windows operating system based computer and enables even the non-engineering students to access it. Results of both the segments of the thesis are discussed. Remarks are presented about the validity of the reliability technique and GUI interface for variable wind speed conditions. Improvements have been suggested to enable the use of the reliability technique for a more elaborate system. Recommendations have been made about expanding the features of the GUI tool and to use it to promote educational interest about renewable power engineering.
ContributorsSinha, Anubhav (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2012
154870-Thumbnail Image.png
Description
As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires a better understanding of renewable generation output, in addition to

As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires a better understanding of renewable generation output, in addition to power grid systems that improve power system operational performance in the presence of anticipated events such as wind power ramps. Because of the stochastic, uncontrollable nature of renewable resources, a thorough and accurate characterization of wind activity is necessary to maintain grid stability and reliability. Wind power ramps from an existing wind farm are studied to characterize persistence forecasting errors using extreme value analysis techniques. In addition, a novel metric that quantifies the amount of non-stationarity in time series wind power data was proposed and used in a real-time algorithm to provide a rigorous method that adaptively determines training data for forecasts. Lastly, large swings in generation or load can cause system frequency and tie-line flows to deviate from nominal, so an anticipatory MPC-based secondary control scheme was designed and integrated into an automatic generation control loop to improve the ability of an interconnection to respond to anticipated large events and fluctuations in the power system.
ContributorsGanger, David (Author) / Vittal, Vijay (Thesis advisor) / Zhang, Junshan (Thesis advisor) / Hedman, Kory (Committee member) / Undrill, John (Committee member) / Arizona State University (Publisher)
Created2016