Matching Items (4)
Filtering by

Clear all filters

151945-Thumbnail Image.png
Description
In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a constellation of heterogeneous processing elements (PEs) (general purpose PEs and application-specific integrated circuits (ASICS)). A typical MPSoC will be composed of a application processor, such as an ARM Coretex-A9 with cache coherent memory hierarchy, and several application sub-systems. Each of these sub-systems are composed of highly optimized instruction processors, graphics/DSP processors, and custom hardware accelerators. Typically, these sub-systems utilize scratchpad memories (SPM) rather than support cache coherency. The overall architecture is an integration of the various sub-systems through a high bandwidth system-level interconnect (such as a Network-on-Chip (NoC)). The shift to MPSoCs has been fueled by three major factors: demand for high performance, the use of component libraries, and short design turn around time. As customers continue to desire more and more complex applications on their embedded devices the performance demand for these devices continues to increase. Designers have turned to using MPSoCs to address this demand. By using pre-made IP libraries designers can quickly piece together a MPSoC that will meet the application demands of the end user with minimal time spent designing new hardware. Additionally, the use of MPSoCs allows designers to generate new devices very quickly and thus reducing the time to market. In this work, a complete MPSoC synthesis design flow is presented. We first present a technique \cite{leary1_intro} to address the synthesis of the interconnect architecture (particularly Network-on-Chip (NoC)). We then address the synthesis of the memory architecture of a MPSoC sub-system \cite{leary2_intro}. Lastly, we present a co-synthesis technique to generate the functional and memory architectures simultaneously. The validity and quality of each synthesis technique is demonstrated through extensive experimentation.
ContributorsLeary, Glenn (Author) / Chatha, Karamvir S (Thesis advisor) / Vrudhula, Sarma (Committee member) / Shrivastava, Aviral (Committee member) / Beraha, Rudy (Committee member) / Arizona State University (Publisher)
Created2013
156190-Thumbnail Image.png
Description
The quality and quantity of talented members of the US STEM workforce has

been a subject of great interest to policy and decision makers for the past 40 years.

Recent research indicates that while there exist specific shortages in specific disciplines

and areas of expertise in the private sector and the federal government,

The quality and quantity of talented members of the US STEM workforce has

been a subject of great interest to policy and decision makers for the past 40 years.

Recent research indicates that while there exist specific shortages in specific disciplines

and areas of expertise in the private sector and the federal government, there is no

noticeable shortage in any STEM academic discipline, but rather a surplus of PhDs

vying for increasingly scarce tenure track positions. Despite the seeming availability

of industry and private sector jobs, recent PhDs still struggle to find employment in

those areas. I argue that the decades old narrative suggesting a shortage of STEM

PhDs in the US poses a threat to the value of the natural science PhD, and that

this narrative contributes significantly to why so many PhDs struggle to find career

employment in their fields. This study aims to address the following question: what is

the value of a STEM PhD outside academia? I begin with a critical review of existing

literature, and then analyze programmatic documents for STEM PhD programs at

ASU, interviews with industry employers, and an examination the public face of value

for these degrees. I then uncover the nature of the value alignment, value disconnect,

and value erosion in the ecosystem which produces and then employs STEM PhDs,

concluding with specific areas which merit special consideration in an effort to increase

the value of these degrees for all stakeholders involved.
ContributorsGarbee, Elizabeth (Author) / Maynard, Andrew D. (Thesis advisor) / Wetmore, Jameson (Committee member) / Anderson, Derrick (Committee member) / Arizona State University (Publisher)
Created2018
151408-Thumbnail Image.png
Description
A fundamental question in the field of strategic management is how companies achieve sustainable competitive advantage. The Market-Oriented Theory (MOT), the Resource-Based Model and their complementary perspective try to answer this fundamental question. The primary goal of this study is to lay the groundwork for Standardized Strategic Assessment Framework (SSAF).

A fundamental question in the field of strategic management is how companies achieve sustainable competitive advantage. The Market-Oriented Theory (MOT), the Resource-Based Model and their complementary perspective try to answer this fundamental question. The primary goal of this study is to lay the groundwork for Standardized Strategic Assessment Framework (SSAF). The SSAF, which consists of a set of six models, aids in the evaluation and assessment of current and future strategic positioning of Small and Medium Enterprises (SMEs). The SSAF was visualized by IDEF0, a systems engineering tool. In addition, a secondary goal is the development of models to explain relationships between a company's resources, capabilities, and competitive strategy within the SSAF. Six models are considered within the SSAF, including R&D; activities model, product innovation model, process innovation model, operational excellence model, and export performance model. Only one of them, R&D; activities model was explained in-debt and developed a model by transformational system. In the R&D; activities model, the following question drives the investigation. Do company R&D; inputs (tangible, intangible and human resources) affect R&D; activities (basic research, applied research, and experimental development)? Based on this research question, eight hypotheses were extrapolated regarding R&D; activities model. In order to analyze these hypotheses, survey questions were developed for the R&D; model. A survey was sent to academic staff and industry experts for a survey instrument validation. Based on the survey instrument validation, content validity has been established and questions, format, and scales have been improved for future research application.
ContributorsDemir, Mustafa (Author) / Waissi, Gary (Thesis advisor) / Humble, Jane (Committee member) / Polesky, Gerald (Committee member) / Arizona State University (Publisher)
Created2012
157656-Thumbnail Image.png
Description
To improve the resilience of complex, interdependent infrastructures, we need to better understand the institutions that manage infrastructures and the work that they do. This research demonstrates that a key aspect of infrastructure resilience is the adequate institutional management of infrastructures. This research analyzes the institutional dimension of infrastructure resilience

To improve the resilience of complex, interdependent infrastructures, we need to better understand the institutions that manage infrastructures and the work that they do. This research demonstrates that a key aspect of infrastructure resilience is the adequate institutional management of infrastructures. This research analyzes the institutional dimension of infrastructure resilience using sociotechnical systems theory and, further, investigates the critical role of institutions for infrastructure resilience using a thorough analysis of water and energy systems in Arizona.

Infrastructure is not static, but dynamic. Institutions play a significant role in designing, building, maintaining, and upgrading dynamic infrastructures. Institutions create the appearance of infrastructure stability while dynamically changing infrastructures over time, which is resilience work. The resilience work of different institutions and organizations sustains, recovers, adapts, reconfigures, and transforms the physical structure on short, medium, and long temporal scales.

To better understand and analyze the dynamics of sociotechnical infrastructure resilience, this research examines several case studies. The first is the social and institutional arrangements for the allocation of resources from Hoover Dam. This research uses an institutional analysis framework and draws on the institutional landscape of water and energy systems in Arizona. In particular, this research illustrates how institutions contribute to differing resilience work at temporal scales while fabricating three types of institutional threads: lateral, vertical, and longitudinal threads.

This research also highlights the importance of institutional interdependence as a critical challenge for improving infrastructure resilience. Institutional changes in one system can disrupt other systems’ performance. The research examines this through case studies that explore how changes to water governance impact the energy system in Arizona. Groundwater regulations affect the operation of thermoelectric power plants which withdraw groundwater for cooling. Generation turbines, droughts, and water governance are all intertwined via institutions in Arizona.

This research, finally, expands and applies the interdependence perspective to a case study of forest management in Arizona. In a nutshell, the perilous combination of chronic droughts and the engineering resilience perspective jeopardizes urban water and energy systems. Wildfires caused by dense forests have legitimized an institutional transition, from thickening forests to thinning trees in Arizona.
ContributorsGim, Changdeok (Author) / Miller, Clark A. (Thesis advisor) / Maynard, Andrew D. (Committee member) / Hirt, Paul W. (Committee member) / Arizona State University (Publisher)
Created2019