Matching Items (3)
Filtering by

Clear all filters

154126-Thumbnail Image.png
Description
Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used

in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict its performance. In particular, evaluating mechanical properties, such as elasticity, plasticity and creep at sub-grain length scales is key to

Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used

in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict its performance. In particular, evaluating mechanical properties, such as elasticity, plasticity and creep at sub-grain length scales is key to developing this understanding as well as building multi-scale models of fuel behavior with predicting capabilities. In this work, modeling techniques were developed to study effects of microstructure on Young’s modulus, which was selected as a key representative property that affects overall mechanical behavior, using experimental data obtained from micro-cantilever bending testing as benchmarks. Beam theory was firstly introduced to calculate Young's modulus of UO2 from the experimental data and then three-dimensional finite element models of the micro-cantilever beams were constructed to simulate bending tests in UO2 at room temperature. The influence of the pore distribution was studied to explain the discrepancy between predicted values and experimental results. Results indicate that results of tests are significantly affected by porosity given that both pore size and spacing in the samples are of the order of the micro-beam dimensions. Microstructure reconstruction was conducted with images collected from three-dimensional serial sectioning using focused ion beam (FIB) and electron backscattering diffraction (EBSD) and pore clusters were placed at different locations along the length of the beam. Results indicate that the presence of pore clusters close to the substrate, i.e., the clamp of the micro-cantilever beam, has the strongest effect on load-deflection behavior, leading to a reduction of stiffness that is the largest for any location of the pore cluster. Furthermore, it was also found from both numerical and i

analytical models that pore clusters located towards the middle of the span and close to the end of the beam only have a very small effect on the load-deflection behavior, and it is concluded that better estimates of Young's modulus can be obtained from micro- cantilever experiments by using microstructurally explicit models that account for porosity in about one half of the beam length close to the clamp. This, in turn, provides an avenue to simplify micro-scale experiments and their analysis.
ContributorsGong, Bowen (Author) / Peralta, Pedro (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2015
136339-Thumbnail Image.png
Description
The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.
ContributorsCelaya, Andrew Jose (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
161700-Thumbnail Image.png
Description
Thin films are widely used for a variety of applications such as electrical interconnects, sensors, as well as optical, mechanical, and decorative coatings. Thin films made of NiTi, commonly referred to as nitinol, have generated recent interest as they are highly suitable for high frequency thermal actuation in microelectromechanical devices

Thin films are widely used for a variety of applications such as electrical interconnects, sensors, as well as optical, mechanical, and decorative coatings. Thin films made of NiTi, commonly referred to as nitinol, have generated recent interest as they are highly suitable for high frequency thermal actuation in microelectromechanical devices because of their small thermal mass and large surface-to-volume ratio. The functional properties of NiTi arise from a diffusionless phase transformation between two of its primary phases: austenite and martensite. This transformation leads to either the shape memory or pseudoelastic effect, where inelastic deformation is recovered with and without the application of heat, respectively. It is well known that the mechanical properties of NiTi are highly dependent on the microstructure, but few studies have been performed to examine the mechanical behavior of thin NiTi films (thickness below 200 nm), which are expected to have grain sizes in a similar range. The primary intent of this work is the synthesis of NiTi thin films with controlled microstructures, followed by characterization of their microstructure and its relationship to the mechanical properties. Microstructural control was achieved by utilizing a novel synthesis technique in which amorphous precursor films are seeded with nanocrystals, which serve as nucleation sites during subsequent crystallization via thermal annealing. This technique enables control of grain size, dispersion, and phase composition of thin films by varying the parameters of seed deposition as well as annealing conditions. The microstructures and composition of the NiTi thin films were characterized using X-ray Diffraction, Electron Microprobe Analysis, High-resolution Transmission Electron Microscopy, Secondary Ion Mass Spectroscopy, Differential Scanning Calorimetry, as well as other complementary techniques. Mechanical properties of the films were investigated using uniaxial tensile testing performed using a custom microfabricated tensile testing stage. The NiTi thin films exhibit mechanical behavior that is distinct from bulk NiTi, which is also highly sensitive to small changes in microstructure and phase composition. These findings are rationalized in terms of the changes in deformation mechanisms that occur at small grain sizes and sample dimensions.
ContributorsRASMUSSEN, Paul (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Solanki, Kiran (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021