Matching Items (4)

Filtering by

Clear all filters

155273-Thumbnail Image.png

The neurobiology of audiovisual integration: a voxel-based lesion symptom mapping study

Description

Audiovisual (AV) integration is a fundamental component of face-to-face communication. Visual cues generally aid auditory comprehension of communicative intent through our innate ability to “fuse” auditory and visual information. However, our ability for multisensory integration can be affected by damage

Audiovisual (AV) integration is a fundamental component of face-to-face communication. Visual cues generally aid auditory comprehension of communicative intent through our innate ability to “fuse” auditory and visual information. However, our ability for multisensory integration can be affected by damage to the brain. Previous neuroimaging studies have indicated the superior temporal sulcus (STS) as the center for AV integration, while others suggest inferior frontal and motor regions. However, few studies have analyzed the effect of stroke or other brain damage on multisensory integration in humans. The present study examines the effect of lesion location on auditory and AV speech perception through behavioral and structural imaging methodologies in 41 left-hemisphere participants with chronic focal cerebral damage. Participants completed two behavioral tasks of speech perception: an auditory speech perception task and a classic McGurk paradigm measuring congruent (auditory and visual stimuli match) and incongruent (auditory and visual stimuli do not match, creating a “fused” percept of a novel stimulus) AV speech perception. Overall, participants performed well above chance on both tasks. Voxel-based lesion symptom mapping (VLSM) across all 41 participants identified several regions as critical for speech perception depending on trial type. Heschl’s gyrus and the supramarginal gyrus were identified as critical for auditory speech perception, the basal ganglia was critical for speech perception in AV congruent trials, and the middle temporal gyrus/STS were critical in AV incongruent trials. VLSM analyses of the AV incongruent trials were used to further clarify the origin of “errors”, i.e. lack of fusion. Auditory capture (auditory stimulus) responses were attributed to visual processing deficits caused by lesions in the posterior temporal lobe, whereas visual capture (visual stimulus) responses were attributed to lesions in the anterior temporal cortex, including the temporal pole, which is widely considered to be an amodal semantic hub. The implication of anterior temporal regions in AV integration is novel and warrants further study. The behavioral and VLSM results are discussed in relation to previous neuroimaging and case-study evidence; broadly, our findings coincide with previous work indicating that multisensory superior temporal cortex, not frontal motor circuits, are critical for AV integration.

Contributors

Agent

Created

Date Created
2017

154197-Thumbnail Image.png

Towards a sensorimotor approach to L2 phonological acquisition

Description

Studies in Second Language Acquisition and Neurolinguistics have argued that adult learners when dealing with certain phonological features of L2, such as segmental and suprasegmental ones, face problems of articulatory placement (Esling, 2006; Abercrombie, 1967) and somatosensory stimulation (Guenther, Ghosh,

Studies in Second Language Acquisition and Neurolinguistics have argued that adult learners when dealing with certain phonological features of L2, such as segmental and suprasegmental ones, face problems of articulatory placement (Esling, 2006; Abercrombie, 1967) and somatosensory stimulation (Guenther, Ghosh, & Tourville, 2006; Waldron, 2010). These studies have argued that adult phonological acquisition is a complex matter that needs to be informed by a specialized sensorimotor theory of speech acquisition. They further suggested that traditional pronunciation pedagogy needs to be enhanced by an approach to learning offering learners fundamental and practical sensorimotor tools to advance the quality of L2 speech acquisition.

This foundational study designs a sensorimotor approach to pronunciation pedagogy and tests its effect on the L2 speech of five adult (late) learners of American English. Throughout an eight week classroom experiment, participants from different first language backgrounds received instruction on Articulatory Settings (Honickman, 1964) and the sensorimotor mechanism of speech acquisition (Waldron 2010; Guenther et al., 2006). In addition, they attended five adapted lessons of the Feldenkrais technique (Feldenkrais, 1972) designed to develop sensorimotor awareness of the vocal apparatus and improve the quality of L2 speech movement. I hypothesize that such sensorimotor learning triggers overall positive changes in the way L2 learners deal with speech articulators for L2 and that over time they develop better pronunciation.

After approximately eight hours of intervention, analysis of results shows participants’ improvement in speech rate, degree of accentedness, and speaking confidence, but mixed changes in word intelligibility and vowel space area. Albeit not statistically significant (p >.05), these results suggest that such a sensorimotor approach to L2 phonological acquisition warrants further consideration and investigation for use in the L2 classroom.

Contributors

Agent

Created

Date Created
2015

156139-Thumbnail Image.png

ALS linked mutations in Matrin 3 alter protein-protein interactions and impede mRNA nuclear export

Description

Exome sequencing was used to identify novel variants linked to amyotrophic lateral sclerosis (ALS), in a family without mutations in genes previously linked to ALS. A F115C mutation in the gene MATR3 was identified, and further examination of other ALS

Exome sequencing was used to identify novel variants linked to amyotrophic lateral sclerosis (ALS), in a family without mutations in genes previously linked to ALS. A F115C mutation in the gene MATR3 was identified, and further examination of other ALS kindreds identified an additional three mutations in MATR3; S85C, P154S and T622A. Matrin 3 is an RNA/DNA binding protein as well as part of the nuclear matrix. Matrin 3 interacts with TDP-43, a protein that is both mutated in some forms of ALS, and found in pathological inclusions in most ALS patients. Matrin 3 pathology, including mislocalization and rare cytoplasmic inclusions, was identified in spinal cord tissue from a patient carrying a mutation in Matrin 3, as well as sporadic ALS patients. In an effort to determine the mechanism of Matrin 3 linked ALS, the protein interactome of wild-type and ALS-linked MATR3 mutations was examined. Immunoprecipitation followed by mass spectrometry experiments were performed using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify ALS-causing mutations in the gene MATR3, as well as a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.

Contributors

Agent

Created

Date Created
2018

156177-Thumbnail Image.png

The role of primary motor cortex in second language word recognition

Description

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second language speech perception. The purpose of this study was to investigate the role of M1 associated with speech motor centers in processing acoustic inputs in the native (L1) and second language (L2), using repetitive Transcranial Magnetic Stimulation (rTMS) to selectively alter neural activity in M1. Thirty-six healthy English/Spanish bilingual subjects participated in the experiment. The performance on a listening word-to-picture matching task was measured before and after real- and sham-rTMS to the orbicularis oris (lip muscle) associated M1. Vowel Space Area (VSA) obtained from recordings of participants reading a passage in L2 before and after real-rTMS, was calculated to determine its utility as an rTMS aftereffect measure. There was high variability in the aftereffect of the rTMS protocol to the lip muscle among the participants. Approximately 50% of participants showed an inhibitory effect of rTMS, evidenced by smaller motor evoked potentials (MEPs) area, whereas the other 50% had a facilitatory effect, with larger MEPs. This suggests that rTMS has a complex influence on M1 excitability, and relying on grand-average results can obscure important individual differences in rTMS physiological and functional outcomes. Evidence of motor support to word recognition in the L2 was found. Participants showing an inhibitory aftereffect of rTMS on M1 produced slower and less accurate responses in the L2 task, whereas those showing a facilitatory aftereffect of rTMS on M1 produced more accurate responses in L2. In contrast, no effect of rTMS was found on the L1, where accuracy and speed were very similar after sham- and real-rTMS. The L2 VSA measure was indicative of the aftereffect of rTMS to M1 associated with speech production, supporting its utility as an rTMS aftereffect measure. This result revealed an interesting and novel relation between cerebral motor cortex activation and speech measures.

Contributors

Agent

Created

Date Created
2018