Matching Items (3)

137282-Thumbnail Image.png

The Role of Primary Motor Cortex (M1) in the Context-Dependent Interference

Description

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.

Contributors

Agent

Created

Date Created
  • 2014-05

136335-Thumbnail Image.png

Time-dependent modulations in corticospinal excitability during motor learning

Description

The primary motor cortex (M1) plays a vital role in motor planning and execution, as well as in motor learning. Baseline corticospinal excitability (CSE) in M1 is known to increase

The primary motor cortex (M1) plays a vital role in motor planning and execution, as well as in motor learning. Baseline corticospinal excitability (CSE) in M1 is known to increase as a result of motor learning, but less is understand about the modulation of CSE at the pre-execution planning stage due to learning. This question was addressed using single pulse transcranial magnetic stimulation (TMS) to measure the modulation of both baseline and planning CSE due to learning a reach to grasp task. It was hypothesized that baseline CSE would increase and planning CSE decrease as a function of trial; an increase in baseline CSE would replicate established findings in the literature, while a decrease in planning would be a novel finding. Eight right-handed subjects were visually cued to exert a precise grip force, with the goal of producing that force accurately and consistently. Subjects effectively learned the task in the first 10 trials, but no significant trends were found in the modulation of baseline or planning CSE. The lack of significant results may be due to the very quick learning phase or the lower intensity of training as compared to past studies. The findings presented here suggest that planning and baseline CSE may be modulated along different time courses as learning occurs and point to some important considerations for future studies addressing this question.

Contributors

Agent

Created

Date Created
  • 2015-05

156177-Thumbnail Image.png

The role of primary motor cortex in second language word recognition

Description

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second language speech perception. The purpose of this study was to investigate the role of M1 associated with speech motor centers in processing acoustic inputs in the native (L1) and second language (L2), using repetitive Transcranial Magnetic Stimulation (rTMS) to selectively alter neural activity in M1. Thirty-six healthy English/Spanish bilingual subjects participated in the experiment. The performance on a listening word-to-picture matching task was measured before and after real- and sham-rTMS to the orbicularis oris (lip muscle) associated M1. Vowel Space Area (VSA) obtained from recordings of participants reading a passage in L2 before and after real-rTMS, was calculated to determine its utility as an rTMS aftereffect measure. There was high variability in the aftereffect of the rTMS protocol to the lip muscle among the participants. Approximately 50% of participants showed an inhibitory effect of rTMS, evidenced by smaller motor evoked potentials (MEPs) area, whereas the other 50% had a facilitatory effect, with larger MEPs. This suggests that rTMS has a complex influence on M1 excitability, and relying on grand-average results can obscure important individual differences in rTMS physiological and functional outcomes. Evidence of motor support to word recognition in the L2 was found. Participants showing an inhibitory aftereffect of rTMS on M1 produced slower and less accurate responses in the L2 task, whereas those showing a facilitatory aftereffect of rTMS on M1 produced more accurate responses in L2. In contrast, no effect of rTMS was found on the L1, where accuracy and speed were very similar after sham- and real-rTMS. The L2 VSA measure was indicative of the aftereffect of rTMS to M1 associated with speech production, supporting its utility as an rTMS aftereffect measure. This result revealed an interesting and novel relation between cerebral motor cortex activation and speech measures.

Contributors

Agent

Created

Date Created
  • 2018