Matching Items (2)
Filtering by

Clear all filters

136311-Thumbnail Image.png
Description
Lipid membranes are a key structure for many classes of viruses. Lipid membranes can be analyzed using the fluid mosaic model, which states that the phospholipid membrane has variable amounts of fluidity and key membrane proteins are presented in areas stabilized by cholesterol-enriched platforms called lipid rafts. This project aims

Lipid membranes are a key structure for many classes of viruses. Lipid membranes can be analyzed using the fluid mosaic model, which states that the phospholipid membrane has variable amounts of fluidity and key membrane proteins are presented in areas stabilized by cholesterol-enriched platforms called lipid rafts. This project aims to further the understanding of the importance of lipid rafts in measles virus (MV) infection and replication, which has not been extensively studied. In order to do this, an MV-susceptible cell line was treated with an anti-cholesterol compound before and after measles virus infection. I found that pre-infection treatments had a marginal effect upon measles cytopathic effect (syncytia formation) or replication. Twenty-four hours post-infection treatment had a deleterious effect on cell viability, but the replication/assembly of infectious units per cell decreased importantly and in dose-dependent manner. Furthermore, by measuring the susceptibility to neutralization of infectious particles obtained from MBCD treated cells, I determined the importance of lipid microdomain environment on the stability of infectious particles. Increased anti-cholesterol treatment enhanced the susceptibility of MV to neutralization. Future studies are proposed to assess the properties of cholesterol depleted viral infectious units.
ContributorsYkema, Matthew Ryan (Author) / Mor, Tsafrir (Thesis director) / Jacobs, Bertram (Committee member) / Julik, Emily (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137763-Thumbnail Image.png
Description
Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a human pathogen, spread from cell to cell by inducing fusion

Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a human pathogen, spread from cell to cell by inducing fusion of cellular membranes. This causes the formation of large multinucleated cells, syncytia. It has been previously reported that lipid microdomains are essential for measles virus infection/replication. In this study we used methyl beta cyclodextrin (MBCD), a cholesterol-sequestering agent to disrupt lipid microdomains. Through transfection of Vero h/SLAM cells, we found that Measles virus fusion was dependent on lipid microdomains integrity. Indeed, a dose dependent fusion inhibition was documented with increasing concentrations of MBCD resulting in reduced formation of syncytia.
ContributorsKwan, Jason (Author) / Reyes del Valle, Jorge (Thesis director) / Chang, Yung (Committee member) / Mor, Tsafrir (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / School of Life Sciences (Contributor)
Created2013-05