Matching Items (657)
Filtering by

Clear all filters

ContributorsWasbotten, Leia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
151635-Thumbnail Image.png
Description
Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and

Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and poet Willa Cather (1873-1947). Larsen has produced two song cycles on works from Cather's substantial output of fiction: one based on Cather's short story, "Eric Hermannson's Soul," titled Margaret Songs: Three Songs from Willa Cather (1996); and later, My Antonia (2000), based on Cather's novel of the same title. In Margaret Songs, Cather's poetry and short stories--specifically the character of Margaret Elliot--combine with Larsen's unique compositional style to create a surprising collaboration. This study explores how Larsen in these songs delves into the emotional and psychological depths of Margaret's character, not fully formed by Cather. It is only through Larsen's music and Cather's poetry that Margaret's journey through self-discovery and love become fully realized. This song cycle is a glimpse through the eyes of two prominent female artists on the societal pressures placed upon Margaret's character, many of which still resonate with women in today's culture. This study examines the work Margaret Songs by discussing Willa Cather, her musical influences, and the conditions surrounding the writing of "Eric Hermannson's Soul." It looks also into Cather's influence on Libby Larsen and the commission leading to Margaret Songs. Finally, a description of the musical, dramatic, and textual content of the songs completes this interpretation of the interactions of Willa Cather, Libby Larsen, and the character of Margaret Elliot.
ContributorsMcLain, Christi Marie (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Holbrook, Amy (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151660-Thumbnail Image.png
Description
Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility

Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility of such music and to encourage similar studies of Puerto Rican music. This study focuses on the music of Héctor Campos Parsi (1922-1998), one of the most prominent composers of the 20th century in Puerto Rico. After an overview of the historical background of music on the island and the biography of the composer, four works from his art song repertoire are given for detailed examination. A product of this study is the first corrected edition of his cycles Canciones de Cielo y Agua, Tres Poemas de Corretjer, Los Paréntesis, and the song Majestad Negra. These compositions date from 1947 to 1959, and reflect both the European and nationalistic writing styles of the composer during this time. Data for these corrections have been obtained from the composer's manuscripts, published and unpublished editions, and published recordings. The corrected scores are ready for publication and a compact disc of this repertoire, performed by soprano Melliangee Pérez and the author, has been recorded to bring to life these revisions. Despite the best intentions of the author, the various copyright issues have yet to be resolved. It is hoped that this document will provide the foundation for a resolution and that these important works will be available for public performance and study in the near future.
ContributorsRodríguez Morales, Luis F., 1980- (Author) / Campbell, Andrew (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Kopta, Anne (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsYi, Joyce (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-22
ContributorsCummiskey, Hannah (Performer) / Kim, Olga (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-23
ContributorsGoglia, Adrienne (Performer)
Created2018-03-02
ContributorsEvans, Emily (Performer) / Sherrill, Amanda (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-02
156077-Thumbnail Image.png
Description
The goal is to provide accurate measurement of the channel between a ground source and a receiving satellite.

The effects of the the ionosphere for ground to space propagation for radio waves in the 3-30 MHz HF band is an unstudied subject.

The effects of the ionosphere on radio propagation is a

The goal is to provide accurate measurement of the channel between a ground source and a receiving satellite.

The effects of the the ionosphere for ground to space propagation for radio waves in the 3-30 MHz HF band is an unstudied subject.

The effects of the ionosphere on radio propagation is a long studied subject, the primary focus has been ground to ground by means of ionospheric reflection and space to ground corrections of ionospheric distortions of GPS.

Because of the plasma properties of the ionosphere there is a strong dependence on the frequency of use.

GPS L1 1575.42 MHz and L2 1227.60 MHz are much less effected than the 3-30 MHz HF band used for skywave propagation.

The channel between the ground transmitter and the satellite receiver is characterized by 2 unique polarization modes with respective delays and Dopplers.

Accurate estimates of delay and Doppler are done using polynomial fit functions.

The application of polarimetric separation of the two propagating polarizations allows improved estimate quality of delay and Doppler of the respective mode.

These methods yield good channel models and an effective channel estimation method well suited for the ground to space propagation.
ContributorsStandage-Beier, Wylie S (Author) / Bliss, Daniel W (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / McGiffen, Thomas (Committee member) / Arizona State University (Publisher)
Created2017
156609-Thumbnail Image.png
Description
Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts

Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts that enable low interface defect density and efficient carrier transport is critical for making high-efficiency solar cells. The recent record-efficiency n-type silicon cells with hydrogenated amorphous silicon (a-Si:H) contacts have demonstrated the usefulness of passivating and carrier-selective contacts. However, the use of a-Si:H contacts should not be limited in just n-type silicon cells.

In the present work, a-Si:H contacts for crystalline silicon and cadmium telluride (CdTe) solar cells are developed. First, hydrogen-plasma-processsed a-Si:H contacts are used in n-type Czochralski silicon cell fabrication. Hydrogen plasma treatment is used to increase the Si-H bond density of a-Si:H films and decrease the dangling bond density at the interface, which leads to better interface passivation and device performance, and wider temperature-processing window of n-type silicon cells under full spectrum (300–1200 nm) illumination. In addition, thickness-varied a-Si:H contacts are studied for n-type silicon cells under the infrared spectrum (700–1200 nm) illumination, which are prepared for silicon-based tandem applications.

Second, the a-Si:H contacts are applied to commercial-grade p-type silicon cells, which have much lower bulk carrier lifetimes than the n-type silicon cells. The approach is using gettering and bulk hydrogenation to improve the p-type silicon bulk quality, and then applying a-Si:H contacts to enable excellent surface passivation and carrier transport. This leads to an open-circuit voltage of 707 mV in p-type Czochralski silicon cells, and of 702 mV, the world-record open-circuit voltage in p-type multi-crystalline silicon cells.

Finally, CdTe cells with p-type a-Si:H hole-selective contacts are studied. As a proof of concept, p-type a-Si:H contacts enable achieving the highest reported open-circuit voltages (1.1 V) in mono-crystalline CdTe devices. A comparative study of applying p-type a-Si:H contacts in poly-crystalline CdTe solar cells is performed, resulting in absolute voltage gain of 53 mV over using the standard tellurium contacts.
ContributorsShi, Jianwei (Author) / Holman, Zachary (Thesis advisor) / Bowden, Stuart (Committee member) / Bertoni, Mariana (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
157133-Thumbnail Image.png
Description
Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$)

Chiral symmetry and its anomalous and spontaneous breaking play an important role

in particle physics, where it explains the origin of pion and hadron mass hierarchy

among other things.

Despite its microscopic origin chirality may also lead to observable effects

in macroscopic physical systems -- relativistic plasmas made of chiral

(spin-$\frac{1}{2}$) particles.

Such plasmas are called \textit{chiral}.

The effects include non-dissipative currents in external fields that could be present

even in quasi-equilibrium, such as the chiral magnetic (CME) and separation (CSE)

effects, as well as a number of inherently chiral collective modes

called the chiral magnetic (CMW) and vortical (CVW) waves.

Applications of chiral plasmas are truly interdisciplinary, ranging from

hot plasma filling the early Universe, to dense matter in neutron stars,

to electronic band structures in Dirac and Weyl semimetals, to quark-gluon plasma

produced in heavy-ion collisions.

The main focus of this dissertation is a search for traces of chiral physics

in the spectrum of collective modes in chiral plasmas.

I start from relativistic chiral kinetic theory and derive

first- and second-order chiral hydrodynamics.

Then I establish key features of an equilibrium state that describes many

physical chiral systems and use it to find the full spectrum of collective modes

in high-temperature and high-density cases.

Finally, I consider in detail the fate of the two inherently chiral waves, namely

the CMW and the CVW, and determine their detection prospects.

The main results of this dissertation are the formulation of a fully covariant

dissipative chiral hydrodynamics and the calculation of the spectrum of collective

modes in chiral plasmas.

It is found that the dissipative effects and dynamical electromagnetism play

an important role in most cases.

In particular, it is found that both the CMW and the CVW are heavily damped by the usual

Ohmic dissipation in charged plasmas and the diffusion effects in neutral plasmas.

These findings prompt a search for new physical observables in heavy-ion collisions,

as well as a revision of potential applications of chiral theories in

cosmology and solid-state physics.
ContributorsRybalka, Denys (Author) / Shovkovy, Igor (Thesis advisor) / Lunardini, Cecilia (Committee member) / Timmes, Francis (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2019