Matching Items (3)
Filtering by

Clear all filters

136227-Thumbnail Image.png
Description
Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.
ContributorsKouteib, Soukaina (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
154340-Thumbnail Image.png
Description
The glycation of plasma proteins leading to the production of advanced glycation end products (AGEs) and subsequent damage is a driving factor in the pathophysiology of diabetic complications. The overall research objective was to elucidate the mechanisms by which birds prevent protein glycation in the presence of naturally high plasma

The glycation of plasma proteins leading to the production of advanced glycation end products (AGEs) and subsequent damage is a driving factor in the pathophysiology of diabetic complications. The overall research objective was to elucidate the mechanisms by which birds prevent protein glycation in the presence of naturally high plasma glucose concentrations. This was accomplished through the specific purpose of examining the impact of temperature and glucose concentration on the percent glycation of chicken serum albumin (CSA) in comparison to human serum albumin (HSA). Purified CSA and HSA solutions prepared at four different glucose concentrations (0 mM, 5.56 mM, 11.11 mM, and 22.22 mM) were incubated at three different temperatures (37.0°C, 39.8°C, and 41.4°C) on separate occasions for seven days with aliquots extracted on days 0, 3, and 7. Samples were analyzed by LC-ESI-MS for percent glycation of albumin. The statistically significant interaction between glucose concentration, temperature, albumin type, and time as determined by four-way repeated measures ANOVA (p = 0.032) indicated that all independent variables interacted to affect the mean percent glycation of albumin. As glucose concentration increased, the percent glycation of both HSA and CSA increased over time at all temperatures. In addition, HSA was glycated to a greater extent than CSA at the two higher glucose concentrations examined for all temperature conditions. Temperature differentially affected percent glycation of HSA and CSA wherein glycation increased with rising temperatures for HSA but not CSA. The results of this study suggest an inherent difference between the human and chicken albumin that contributes to the observed differences in glycation. Further research is needed to characterize this inherent difference in an effort to elucidate the mechanism by which birds protect plasma proteins from glycation. Future related work has the potential to lead to the development of novel therapies to prevent or reverse protein glycation prior to the formation of AGEs in humans, thus preventing the development and devastating effects of numerous diabetic complications.
ContributorsZuck, Jessica (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2016
161567-Thumbnail Image.png
Description
Background: Sugars form advanced glycation end products (AGEs) throughnatural metabolism and interactions with proteins, lipids, and nucleic acids, which accumulate in tissues and have been implicated in the etiology of chronic diseases. Due to the increased consumption of fructose and its high ability to form AGEs, a further understanding of

Background: Sugars form advanced glycation end products (AGEs) throughnatural metabolism and interactions with proteins, lipids, and nucleic acids, which accumulate in tissues and have been implicated in the etiology of chronic diseases. Due to the increased consumption of fructose and its high ability to form AGEs, a further understanding of this association is important to clarify the role of sugars in disease. The objective was to explore the association between usual fructose intake and serum levels of AGEs, as measured by carboxymethyl-lysine (CML) and methylglyoxal derivative (MG-H1), in healthy adults. Methods: This is a secondary analysis of a 15-d controlled feeding study (n=100) with participants consuming their usual diet conducted in the Phoenix metropolitan area. To assess participants’ usual diet, they were asked to complete two 7-d food diaries, which were then used to create custom 15-d menu plans administered during the feeding period. Forty participants were selected based on their 15-d mean total fructose intake for this analysis [top and bottom 20% of the sample distribution (median, IQR); high fructose (HF) n= 20, 72.6 (66.1-90.4) g/day, low fructose (LF) n= 20, 28.8 (22.7-32.2) g/day. Fasting serum collected five weeks after the feeding period were analyzed for CML and MG-H1, two well-established AGEs, using ELISA kits. A database of 549 common foods with known CML amounts was used to calculate exogenous CML intake based on daily food intake data. A general linear model was fitted to investigate the difference in serum CML and MG-H1 between LF and HF groups while adjusting for age, gender, BMI, and exogenous CML intake. Results: Participants in the HF group had significantly higher serum CML and lower MG-H1 levels compared to participants in the LF group (p=0.013 and p=0.002, respectively). This difference remained statistically significant after adjusting for covariates. Conclusions: The findings suggest that endogenous CML formation may be an explanation for the significantly higher serum CML levels in the HF compared to the LF group. This is significant in further understanding mechanisms of fructose intake and disease etiology and could have implications for at-risk populations consuming a high fructose diet.
ContributorsWeigand, Bethany (Author) / Tasevska, Natasha (Thesis advisor) / Sweazea, Karen (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2021