Matching Items (2)
Filtering by

Clear all filters

136227-Thumbnail Image.png
Description
Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.
ContributorsKouteib, Soukaina (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
154222-Thumbnail Image.png
Description
Coccidioidomycosis (valley fever) is caused by inhalation of arthrospores from soil-dwelling fungi, Coccidioides immitis and C. posadasii. This dimorphic fungus and disease are endemic to the southwestern United States, central valley in California and Mexico. The Genome of Coccidioidies has been sequenced but proteomic studies are absent. To address this

Coccidioidomycosis (valley fever) is caused by inhalation of arthrospores from soil-dwelling fungi, Coccidioides immitis and C. posadasii. This dimorphic fungus and disease are endemic to the southwestern United States, central valley in California and Mexico. The Genome of Coccidioidies has been sequenced but proteomic studies are absent. To address this gap in knowledge, we generated proteome of Spherulin (lysate of Spherule phase) using LC-MS/MS and identified over 1300 proteins. We also investigated lectin reactivity to spherules in human lung tissue based on the hypothesis that coccidioidal glycosylation is different from mammalian glycosylation, and therefore certain lectins would have differential binding properties to fungal glycoproteins. Lectin-based immunohistochemistry using formalin-fixed paraffin-embedded human lung tissue from human coccidioidomycosis patients demonstrated that Griffonia simplificonia lectin II (GSL II) and succinylated wheat germ agglutinin (sWGA) bound specifically to endospores and spherules in infected lungs, but not to adjacent human tissue. GSL II and sWGA-lectin affinity chromatography using Spherulin, followed by LC-MS/MS was used to isolate and identify 195 proteins that bind to GSL-II lectin and 224 proteins that bind to sWGA lectin. This is the first report that GSL II and sWGA lectins bind specifically to Coccidioides endospores and spherules in infected human tissues. Our list of proteins from spherulin (whole and GSL-II and sWGA binding fraction) may also serve as a Coccidioidal Rosetta-Stone generated from mass spectra to identify proteins from 3 different databases: The Broad Institutes Coccidioides Genomes project, RefSeq and SwissProt. This also serves as a viable avenue for proteomics based diagnostic test development for valley fever. Using lectin chromatography and LC MS/MS, we identified over 100 proteins in plasma of two patients and six proteins in urine of one patient. We also identified over eighty fungal proteins isolated from spherules from biopsied infected lung tissue. This, to the best of our knowledge, is the first such example of detecting coccidioidal proteins in patient blood and urine and provides a foundation for development of a proteomics based diagnostic test as opposed to presently available but unreliable serologic diagnostic tests reliant on an antibody response in the host.
ContributorsKaushal, Setu (Author) / Lake, Douglas (Thesis advisor) / Magee, Dewey Mitchell (Committee member) / Chandler, Douglas (Committee member) / Rawls, Jeffery (Committee member) / Arizona State University (Publisher)
Created2015