Matching Items (20)

136225-Thumbnail Image.png

MEASURING AIR QUALITY USING WIRELESS SELF-POWERED DEVICES

Description

High concentrations of carbon monoxide and particulate matter can cause respiratory disease, illness, and death in high doses. Air pollution is a concern in many urban areas of emerging markets that rely on outdated technologies for transportation and electricity generation;

High concentrations of carbon monoxide and particulate matter can cause respiratory disease, illness, and death in high doses. Air pollution is a concern in many urban areas of emerging markets that rely on outdated technologies for transportation and electricity generation; rural air quality is also a concern when noting the high prevalence of products of incomplete combustion resulting from open fires for cooking and heating. Monitoring air quality is an essential step to identifying these and other factors that affect air quality, and thereafter informing engineering and policy decisions to improve the quality of air. This study seeks to measure changes in air quality across spatial and temporal domains, with a specific focus on microclimates within an urban area. A prototype, low-cost air quality monitoring device has been developed to measure the concentrations of particulate matter, ozone, and carbon monoxide multiple times per minute. The device communicates data wirelessly via cell towers, and can run off-grid using a solar PV-battery system. The device can be replicated and deployed across urban regions for high-fidelity emissions monitoring to explore the effect of anthropogenic and environmental factors on intra-hour air quality. Hardware and software used in the device is described, and the wireless data communication protocols and capabilities are discussed.

Contributors

Agent

Created

Date Created
2015-05

136591-Thumbnail Image.png

A Sustainable Approach to Wastewater Treatment Using Microbial Fuel Cells with Peroxide Production

Description

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary water treatment or as a medical disinfectant, among many other uses. Various carbon-based catalysts and binders for use at the cathode of a an MFC for H2O2 production are explored using linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) techniques. The oxygen reduction reaction (ORR) at the cathode has slow kinetics at conditions present in the MFC, making it important to find a catalyst type and loading which promote a 2e- (rather than 4e-) reaction to maximize H2O2 formation. Using LSV methods, I compared the cathodic overpotentials associated with graphite and Vulcan carbon catalysts as well as Nafion and AS-4 binders. Vulcan carbon catalyst with Nafion binder produced the lowest overpotentials of any binder/catalyst combinations. Additionally, I determined that pH control may be required at the cathode due to large potential losses caused by hydroxide (OH-) concentration gradients. Furthermore, RRDE tests indicate that Vulcan carbon catalyst with a Nafion binder has a higher H2O2 production efficiency at lower catalyst loadings, but the trade-off is a greater potential loss due to higher activation energy. Therefore, an intermediate catalyst loading of 0.5 mg/cm2 Vulcan carbon with Nafion binder is recommended for the final MFC design. The chosen catalyst, binder, and loading will maximize H2O2 production, optimize MFC performance, and minimize the need for additional energy input into the system.

Contributors

Agent

Created

Date Created
2015-05

148045-Thumbnail Image.png

Urban Forestry as a Carbon Offset Method at ASU West Campus

Description

As part of Arizona State University’s net-zero carbon initiative, 1000 mesquite trees were planted on a vacant plot of land at West Campus to sequester carbon from the atmosphere. Urban forestry is typically a method of carbon capture in temperate

As part of Arizona State University’s net-zero carbon initiative, 1000 mesquite trees were planted on a vacant plot of land at West Campus to sequester carbon from the atmosphere. Urban forestry is typically a method of carbon capture in temperate areas, but it is hypothesized that the same principle can be employed in arid regions as well. To test this hypothesis a carbon model was constructed using the pools and fluxes measured at the Carbon sink and learning forest at West Campus. As an ideal, another carbon model was constructed for the mature mesquite forest at the Hassayampa River Preserve to project how the carbon cycle at West Campus could change over time as the forest matures. The results indicate that the West Campus plot currently functions as a carbon source while the site at the Hassayampa river preserve currently functions as a carbon sink. Soil composition at both sites differ with inorganic carbon contributing to the largest percentage at West Campus, and organic carbon at Hassayampa. Predictive modeling using biomass accumulation estimates and photosynthesis rates for the Carbon Sink Forest at West Campus both predict approximately 290 metric tons of carbon sequestration after 30 years. Modeling net ecosystem exchange predicts that the West Campus plot will begin to act as a carbon sink after 33 years.

Contributors

Agent

Created

Date Created
2021-05

152282-Thumbnail Image.png

Soot black carbon dynamics in arid/urban ecosystem

Description

Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a

Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char, charcoal and soot. These sub-classifications range in particle size, formation temperature, and relative reactivity. Interest in BC has increased because of its role in the long-term storage of organic matter and the biogeochemistry of urban areas. The global BC budget is unbalanced. Production of BC greatly outweighs decomposition of BC. This suggests that there are unknown or underestimated BC removal processes, and it is likely that some of these processes are occurring in soils. However, little is known about BC reactivity in soil and especially in desert soil. This work focuses on soot BC, which is formed at higher temperatures and has a lower relative reactivity than other forms of BC. Here, I assess the contribution of soot BC to central AZ soils and use the isotopic composition of soot BC to identify sources of soot BC. Soot BC is a significant (31%) fraction of the soil organic matter in central AZ and this work suggests that desert and urban soils may be a storage reservoir for soot BC. I further identify previously unknown removal processes of soot BC found naturally in soil and demonstrate that soil soot BC undergoes abiotic (photo-oxidation) and biotic reactions. Not only is soot BC degraded by these processes, but its chemical composition is altered, suggesting that soot BC contains some chemical moieties that are more reactive than others. Because soot BC demonstrates both refractory and reactive character, it is likely that the structure of soot BC; therefore, its interactions in the environment are complex and it is not simply a recalcitrant material.

Contributors

Agent

Created

Date Created
2013

151202-Thumbnail Image.png

Fabrication and characterization of carbon nanotubes-zinc oxide structure by drop-drying and ink jet printing

Description

This thesis elaborates the application of carbon nanotubes (CNTs) and it is discussed in two parts. In the first part of the thesis, two types of CNTs inks for inkjet materials printer are prepared. They are both chemical stable and

This thesis elaborates the application of carbon nanotubes (CNTs) and it is discussed in two parts. In the first part of the thesis, two types of CNTs inks for inkjet materials printer are prepared. They are both chemical stable and printable, effective and easily made. The sheet resistance of printed films decreases exponentially as the number of layers increases. In the second part of this study, CNTs/ZnO composite structures are fabricated to understand the electronic and optical properties. The materials were deposited by two different methods: drop-drying and RF magnetic sputtering system on flexible polymer substrates. To further increase the conductivity of the various layers of deposited CNTs films, electrical and optical characterizations are also done. This study establishes CNTs as a multi-functional semitransparent conductor, which can be deposited at room-temperature with other transparent conductive oxide (TCO) composites for application in flexible electronics and printed circuit and sensors.

Contributors

Agent

Created

Date Created
2012

151208-Thumbnail Image.png

High pressure and high temperature study on lithium carbide (Li₂C₂) and calcium carbide (CaC₂): an attempt to make a novel polyanionic form of carbon

Description

Carbon lacks an extended polyanionic chemistry which appears restricted to carbides with C4-, C22-, and C34- moieties. The most common dimeric anion of carbon atoms is C22- with a triple bond between the two carbon atoms. Compounds containing the dicarbide

Carbon lacks an extended polyanionic chemistry which appears restricted to carbides with C4-, C22-, and C34- moieties. The most common dimeric anion of carbon atoms is C22- with a triple bond between the two carbon atoms. Compounds containing the dicarbide anion can be regarded as salts of acetylene C2H2 (ethyne) and hence are also called acetylides or ethynides. Inspired by the fact that molecular acetylene undergoes pressure induced polymerization to polyacetylene above 3.5 GPa, it is of particular interest to study the effect of pressure on the crystal structures of acetylides as well. In this work, pressure induced polymerization was attempted with two simple metal acetylides, Li2C2 and CaC2. Li2C2 and CaC2 have been synthesized by a direct reaction of the elements at 800ºC and 1200ºC, respectively. Initial high pressure investigations were performed inside Diamond anvil cell (DAC) at room temperature and in situ Raman spectroscopic measurement were carried out up to 30 GPa. Near 15 GPa, Li2C2 undergoes a transition into a high pressure acetylide phase and around 25 GPa this phase turns amorphous. CaC2 is polymorphic at ambient pressure. Monoclinic CaC2-II does not show stability at pressures above 1 GPa. Tetragonal CaC2-I is stable up to at least 12 GPa above which possibly a pressure-induced distortion occurs. At around 18 GPa, CaC2 turns amorphous. In a subsequent series of experiments both Li2C2 and CaC2 were compressed to 10 GPa in a multi anvil (MA) device and heated to temperatures between 300 and 1100oC for Li2C2, and 300°C to 900°C for CaC2. The recovered products were analyzed by PXRD and Raman spectroscopy. It has been observed that reactions at temperature higher than 900°C were very difficult to control and hitherto only short reaction times could be applied. For Li2C2, a new phase, free of starting material was found at 1100°C. Both the PXRD patterns and Raman spectra of products at 1100oC could not be matched to known forms of carbon or carbides. For CaC2 new reflections in PXRD were visible at 900ºC with the starting material phase.

Contributors

Agent

Created

Date Created
2012

150054-Thumbnail Image.png

Characterization of novel adsorbents for the recovery of alcohol biofuels from aqueous solutions via solid-phase extraction

Description

Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as

Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as feedback inhibition and inefficient and generally energy intensive product recovery processes. To circumvent both feedback inhibition and recovery issues, researchers have turned their attention to incorporating energy efficient separation techniques such as adsorption in in situ product recovery (ISPR) approaches. This thesis focused on the characterization of two novel adsorbents for the recovery of alcohol biofuels from model aqueous solutions. First, a hydrophobic silica aerogel was evaluated as a biofuel adsorbent through characterization of equilibrium behavior for conventional second generation biofuels (e.g., ethanol and n-butanol). Longer chain and accordingly more hydrophobic alcohols (i.e., n-butanol and 2-pentanol) were more effectively adsorbed than shorter chain alcohols (i.e., ethanol and i-propanol), suggesting a mechanism of hydrophobic adsorption. Still, the adsorbed alcohol capacity at biologically relevant conditions were low relative to other `model' biofuel adsorbents as a result of poor interfacial contact between the aqueous and sorbent. However, sorbent wettability and adsorption is greatly enhanced at high concentrations of alcohol in the aqueous. Consequently, the sorbent exhibits Type IV adsorption isotherms for all biofuels studied, which results from significant multilayer adsorption at elevated alcohol concentrations in the aqueous. Additionally, sorbent wettability significantly affects the dynamic binding efficiency within a packed adsorption column. Second, mesoporous carbons were evaluated as biofuel adsorbents through characterization of equilibrium and kinetic behavior. Variations in synthetic conditions enabled tuning of specific surface area and pore morphology of adsorbents. The adsorbed alcohol capacity increased with elevated specific surface area of the adsorbents. While their adsorption capacity is comparable to polymeric adsorbents of similar surface area, pore morphology and structure of mesoporous carbons greatly influenced adsorption rates. Multiple cycles of adsorbent regeneration rendered no impact on adsorption equilibrium or kinetics. The high chemical and thermal stability of mesoporous carbons provide potential significant advantages over other commonly examined biofuel adsorbents. Correspondingly, mesoporous carbons should be further studied for biofuel ISPR applications.

Contributors

Agent

Created

Date Created
2011

150366-Thumbnail Image.png

Evaluation of nanoporous carbon thin films for drug loading and controlled release

Description

Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules.

Mesoporous materials that possess large surface area, tunable pore size, and ordered structures are attractive features for many applications such as adsorption, protein separation, enzyme encapsulation and drug delivery as these materials can be tailored to host different guest molecules. Films provide a model system to understand how the pore orientation impacts the potential for loading and release of selectively sized molecules. This research work aims to develop structure-property relationships to understand how pore size, geometry, and surface hydrophobicity influence the loading and release of drug molecules. In this study, the pore size is systematically varied by incorporating pore-swelling agent of polystyrene oligomers (hPS) to soft templated mesoporous carbon films fabricated by cooperative assembly of poly(styrene-block-ethylene oxide) (SEO) with phenolic resin. To examine the impact of morphology, different compositions of amphiphilic triblock copolymer templates, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO), are used to form two-dimensional hexagonal and cubic mesostructures. Lastly, the carbonization temperature provides a handle to tune the hydrophobicity of the film. These mesoporous films are then utilized to understand the uptake and release of a model drug Mitoxantrone dihydrochloride from nanostructured materials. The largest pore size (6nm) mesoporous carbon based on SEO exhibits the largest uptake (3.5μg/cm2); this is attributed to presence of larger internal volume compared to the other two films. In terms of release, a controlled response is observed for all films with the highest release for the 2nm cubic film (1.45 μg/cm2) after 15 days, but this is only 56 % of the drug loaded. Additionally, the surface hydrophobicity impacts the fraction of drug release with a decrease from 78% to 43%, as the films become more hydrophobic when carbonized at higher temperatures. This work provides a model system to understand how pore morphology, size and chemistry influence the drug loading and release for potential implant applications.

Contributors

Agent

Created

Date Created
2011

151007-Thumbnail Image.png

Landscape planning and biogeochemistry: estimating and analyzing carbon sequestration efficacy in dryland open space

Description

Despite public demand for climate change mitigation and natural open space conservancy, existing political and design efforts are only beginning to address the declining efficacy of the biotic carbon pool (C-pool) to sequester carbon. Advances in understanding of biogeochemical processes

Despite public demand for climate change mitigation and natural open space conservancy, existing political and design efforts are only beginning to address the declining efficacy of the biotic carbon pool (C-pool) to sequester carbon. Advances in understanding of biogeochemical processes have provided methods for estimating carbon embodied in natural open spaces and enhancing carbon sequestration efficacy. In this study, the benefits of carbon embodied in dryland open spaces are determined by estimating carbon flux and analyzing ecological, social, and economic benefits provided by sequestered carbon. Understanding the ecological processes and derived benefits of carbon exchange in dryland open spaces will provide insight into enhancing carbon sequestration efficacy. Open space carbon is estimated by calculating the amount of carbon sequestration (estimated in Mg C / ha / y) in dryland open space C-pools. Carbon sequestration in dryland open spaces can be summarized in five open space typologies: hydric, mesic, aridic, biomass for energy agriculture, and traditional agriculture. Hydric (wetland) systems receive a significant amount of moisture; mesic (riparian) systems receive a moderate amount of moisture; and aridic (dry) systems receive low amounts of moisture. Biomass for energy production (perennial biomass) and traditional agriculture (annual / traditional biomass) can be more effective carbon sinks if managed appropriately. Impacts of design interventions to the carbon capacity of dryland open space systems are calculated by estimating carbon exchange in existing open space (base case) compared to projections of carbon sequestered in a modified system (prototype design). A demonstration project at the Lower San Pedro River Watershed highlights the potential for enhancing carbon sequestration. The site-scale demonstration project takes into account a number of limiting factors and opportunities including: availability of water and ability to manipulate its course, existing and potential vegetation, soil types and use of carbon additives, and land-use (particularly agriculture). Specific design challenges to overcome included: restoring perennial water to the Lower San Pedro River, reestablishing hydric and mesic systems, linking fragmented vegetation, and establishing agricultural systems that provide economic opportunities and act as carbon sinks. The prototype design showed enhancing carbon sequestration efficacy by 128-133% is possible with conservative design interventions.

Contributors

Agent

Created

Date Created
2012

153370-Thumbnail Image.png

Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

Description

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.

Contributors

Agent

Created

Date Created
2015