Matching Items (11)
Filtering by

Clear all filters

152753-Thumbnail Image.png
Description
Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early

Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.
ContributorsPope, Ronald L (Author) / Wu, Jianguo (Thesis advisor) / Boone, Christopher G. (Committee member) / Brazel, Anthony J. (Committee member) / Forzani, Erica S. (Committee member) / Fraser, Matthew P. (Committee member) / Arizona State University (Publisher)
Created2014
153253-Thumbnail Image.png
Description
Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in

Chloroform (CHCl3) is an important atmospheric pollutant by its direct health effects as well as by its contribution to photochemical smog formation. Chloroform outgassing from swimming pools is not typically considered a source of atmospheric CHCl3 because swimming pools are scarce compared to other sources. However, large urban areas in hot climates such as Phoenix, AZ contain a substantial amount of swimming pools, potentially resulting in significant atmospheric fluxes. In this study, CHCl3 formation potential (FP) from disinfection of swimming pools in Phoenix was investigated through laboratory experiments and annual CHCl3 emission fluxes from swimming pools were estimated based on the experimental data.

Swimming pool water (collected in June 2014 in Phoenix) and model contaminants (Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Compounds (EDCs), artificial sweeteners, and artificial human waste products) were chlorinated in controlled laboratory experiments. The CHCl3 production during chlorination was determined using Gas Chromatography-Mass Spectrometry (GC-MS) following solid-phase microextraction (SPME). Upon chlorination, all swimming pool water samples and contaminants produced measureable amounts of chloroform. Chlorination of swimming pool water produced 0.005-0.134 mol CHCl3/mol C and 0.004-0.062 mol CHCl3/mol Cl2 consumed. Chlorination of model contaminants produced 0.004-0.323 mol CHCl3/mol C and 0.001-0.247 mol CHCl3/mol Cl2 consumed. These numbers are comparable and indicate that the model contaminants react similarly to swimming pool water during chlorination. The CHCl3 flux from swimming pools in Phoenix was estimated at approximately 3.9-4.3 Gg/yr and was found to be largely dependent on water temperature and wind speed while air temperature had little effect. This preliminary estimate is orders of magnitude larger than previous estimates of anthropogenic emissions in Phoenix suggesting that swimming pools might be a significant source of atmospheric CHCl3 locally.
ContributorsRose, Christy J (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew (Committee member) / Hayes, Mark (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2014
150264-Thumbnail Image.png
Description
The following research is a regulatory and emissions analysis of collocated sources of air pollution as they relate to the definition of "major, stationary, sources", if their emissions were amalgamated. The emitting sources chosen for this study are seven facilities located in a single, aggregate mining pit, along the Aqua

The following research is a regulatory and emissions analysis of collocated sources of air pollution as they relate to the definition of "major, stationary, sources", if their emissions were amalgamated. The emitting sources chosen for this study are seven facilities located in a single, aggregate mining pit, along the Aqua Fria riverbed in Sun City, Arizona. The sources in question consist of Rock Crushing and Screening plants, Hot Mix Asphalt plants, and Concrete Batch plants. Generally, individual facilities with emissions of a criteria air pollutant over 100 tons per year or 70 tons per year for PM10 in the Maricopa County non-attainment area would be required to operate under a different permitting regime than those with emissions less than stated above. In addition, facility's that emit over 25 tons per year or 150 pounds per hour of NOx would trigger Maricopa County Best Available Control Technology (BACT) and would be required to install more stringent pollution controls. However, in order to circumvent the more stringent permitting requirements, some facilities have "collocated" in order to escape having their emissions calculated as single source, while operating as a single, production entity. The results of this study indicate that the sources analyzed do not collectively emit major source levels of emissions; however, they do trigger year and daily BACT for NOx. It was also discovered that lack of grid power contributes to the use of generators, which is the main source of emissions. Therefore, if grid electricity was introduced in outlying areas of Maricopa County, facilities could significantly reduce the use of generator power; thereby, reducing pollutants associated with generator use.
ContributorsFranquist, Timothy S (Author) / Olson, Larry (Thesis advisor) / Hild, Nicholas (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2011
151081-Thumbnail Image.png
Description
ABSTRACT In recent years, the total amount of air pollutant emissions in China was reduced year by year, but pollution is still very serious, especially in some big cities where the environmental pollution has worsened in the last 20 years. The "Law of the People's Republic of China on the

ABSTRACT In recent years, the total amount of air pollutant emissions in China was reduced year by year, but pollution is still very serious, especially in some big cities where the environmental pollution has worsened in the last 20 years. The "Law of the People's Republic of China on the Prevention and Control of Atmospheric Pollution" ( LPCAP) was established in 1987. With the development of industrialization and air pollution changes, it had been revised twice in 1995 and 2000.The third revision of the law began in 2009 which was included in the "Eleventh five-year National People's Congress Standing legislative plan" and the State Council's 2009 legislative program. At present, the third revision of the LPCAP is in progress and MEP has completed the manuscript of the revised draft of the law. The purpose of this study is to explore the current situation of China's air pollution, as well as history of LPCAP, analysis of amendments in atmospheric legislation and the achievements of the LPCAP. Combined with China current situation, the research exposed some urgent problems of the Chinese atmospheric legislation which are related to: fã The issues of the regional Total Emission Control (TEC) policy and division. fã The issues of allocation of pollutant emission allowances and trade policy fã The issues of improving the pollution emission permit system. fã The issues of the mobile source emissions management. fã The issues of fuel management. fã The issues of the guarantee measures of the implementation of the LPCAP. In addition, the study compares the LPCAP with the U.S. CAA to offer some solutions for the third revised law and tries to find a fundamental solution for the flaws of China's existing Atmospheric Pollution Prevention legal system to be more Operable. As a result, the gap in air quality in China and the developed countries of the world will be narrowed and China will be better positioned for sustainable development.
ContributorsLi, Shengtang (Author) / Olson, Larry (Thesis advisor) / Brown, Albert (Committee member) / Peterson, Danny (Committee member) / Arizona State University (Publisher)
Created2012
154136-Thumbnail Image.png
Description
United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the time USEPA conducted the analysis. The importance of identifying any air toxic pollutants affecting school children needs to be analyzed.

United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the time USEPA conducted the analysis. The importance of identifying any air toxic pollutants affecting school children needs to be analyzed. Conducting an air monitoring toxic analysis on the Navajo Nation at Church Rock Elementary School, Church Rock, New Mexico (CRNM) was carried out. The current school location posed a concern, in regards to the surrounding stationary, mobile, and natural emissions emitted all types of toxic pollutants. USEPA sponsors various air monitoring program, which Tribal Air Monitoring Support (TAMS) program undertook, and offered tribal programs, organizations or agencies to utilized air monitoring equipment's. The air monitoring setup was conducted with the contract Eastern Research Group, Inc. (ERG) laboratory, where collection of 24-hour ambient air samples for 60 days on a 6-day sampling interval were performed. The analysis for volatile organic compounds (VOCs)were collected from canister samples using USEPA Compendium Method TO-15, polycyclic aromatic hydrocarbons (PAHs) from polyurethane foam (PUF) and XAD-2 resin samples using USEPA Compendium Method TO-13A. Carbonyl compounds were collected by sorbent cartridge samples using USEPA Compendium Method TO-11A, and trace of metals from filters were sampled using USEPA Compendium Method IO-3.5 and FEM EQL-0512-202. A total of 53 VOC concentrations were greater than 1 μg/m3, where dichlorodifluoromethane, trichlorofluoromethane, chloromethane, dichloromethane, propylene, toluene, acrolein and acetylene were detected. A total of 23 carbonyl compound concentrations were greater than 1 μg/m3, where acetone and formaldehyde were measured. Naphthalene average with the highest average for PAHs, where phenanthrene and retene were the second and third highest averages. As for the metals the highest averages resulted from manganese, chromium and lead. Overall, the air toxic pollutants resulted from CRNM surrounding monitoring site were detected. Identifying the potential emitter source or sources cannot be assessed.
ContributorsBilley, Karmen (Author) / Olson, Larry (Thesis advisor) / Peterson, Danny (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2015
156415-Thumbnail Image.png
Description
Mexico City has an ongoing air pollution issue that negatively affects its citizens and surroundings with current structural disconnections preventing the city from improving its overall air quality. Thematic methodological analysis reveals current obstacles and barriers, as well as variables contributing to this persistent problem. A historical background reveals current

Mexico City has an ongoing air pollution issue that negatively affects its citizens and surroundings with current structural disconnections preventing the city from improving its overall air quality. Thematic methodological analysis reveals current obstacles and barriers, as well as variables contributing to this persistent problem. A historical background reveals current programs and policies implemented to improve Mexico’s City air quality. Mexico City’s current systems, infrastructure, and policies are inadequate and ineffective. There is a lack of appropriate regulation on other modes of transportation, and the current government system fails to identify how the class disparity in the city and lack of adequate education are contributing to this ongoing problem. Education and adequate public awareness can potentially aid the fight against air pollution in the Metropolitan City.
ContributorsGarcia, Lucero (Author) / Duarte, Marisa E. (Thesis advisor) / Arzubiaga, Angela (Committee member) / Richter, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
156957-Thumbnail Image.png
Description
Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the

Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the focus is on flows in realistic urban geometry. Both deterministic and stochastic transport patterns are identified, as inertial Lagrangian coherent structures. For the deterministic case, the organizing structures are well defined and are extracted at different hours of a day to reveal the variability of coherent patterns. For the stochastic case, a random displacement model for fluid particles is formulated, and used to derive the governing equations for inertial particles to examine the change in organizing structures due to ``zeroth-order'' random noise. It is found that, (1) the Langevin equation for inertial particles can be reduced to a random displacement model; (2) using random noise based on inhomogeneous turbulence, whose diffusivity is derived from $k$-$\epsilon$ models, major coherent structures survive to organize local flow patterns and weaker structures are smoothed out due to random motion.

A study of three-dimensional Lagrangian coherent structures (LCS) near HKIA is then presented and related to previous developments of two-dimensional (2D) LCS analyses in detecting windshear experienced by landing aircraft. The LCS are contrasted among three independent models and against 2D coherent Doppler light detection and ranging (LIDAR) data. Addition of the velocity information perpendicular to the lidar scanning cone helps solidify flow structures inferred from previous studies; contrast among models reveals the intramodel variability; and comparison with flight data evaluates the performance among models in terms of Lagrangian analyses. It is found that, while the three models and the LIDAR do recover similar features of the windshear experienced by a landing aircraft (along the landing trajectory), their Lagrangian signatures over the entire domain are quite different - a portion of each numerical model captures certain features resembling those LCS extracted from independent 2D LIDAR analyses based on observations. Overall, it was found that the Weather Research and Forecast (WRF) model provides the best agreement with the LIDAR data.

Finally, the three-dimensional variational (3DVAR) data assimilation scheme in WRF is used to incorporate the LIDAR line of sight velocity observations into the WRF model forecast at HKIA. Using two different days as test cases, it is found that the LIDAR data can be successfully and consistently assimilated into WRF. Using the updated model forecast LCS are extracted along the LIDAR scanning cone and compare to onboard flight data. It is found that the LCS generated from the updated WRF forecasts are generally better correlated with the windshear experienced by landing aircraft as compared to the LIDAR extracted LCS alone, which suggests that such a data assimilation scheme could be used for the prediction of windshear events.
ContributorsKnutson, Brent (Author) / Tang, Wenbo (Thesis advisor) / Calhoun, Ronald (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2018
155239-Thumbnail Image.png
Description
Civilian and military use of remotely piloted aircraft (RPA) has significantly increased in recent years. Specifically, the United States Air Force (USAF) has an insatiable demand for RPA operations, that are responsible for fulfilling critical demands in every theater 24 hours a day, 365 days a year (United States Air

Civilian and military use of remotely piloted aircraft (RPA) has significantly increased in recent years. Specifically, the United States Air Force (USAF) has an insatiable demand for RPA operations, that are responsible for fulfilling critical demands in every theater 24 hours a day, 365 days a year (United States Air Force, 2015). Around the clock operations have led to a manning shortage of RPA pilots in the USAF. The USAF MQ-9 “Reaper” Weapons School trains tactical experts and leaders of Airmen skilled in the art of integrated battle-space dominance (United States Air Force, 2015). Weapons Officers for the MQ-9 platform are also critically under-manned, with only 17% of allocated slots filled (B. Callahan, personal communication, January 28, 2016). Furthermore, the leading cause of training attrition has been attributed to lack of critical thinking and problem solving skills (B. Callahan, personal communication, January 28, 2016); skills not directly screened for prior to entering the RPA pilot career field. The proposed study seeks to discover patterns of student behaviors in the brief and debrief process in Weapons School, with the goal of identifying the competencies that distinguish the top students in Weapons School.
ContributorsDriggs, Jade B (Author) / Cooke, Nancy J. (Thesis advisor) / Niemczyk, Mary (Committee member) / Roscoe, Rod (Committee member) / Arizona State University (Publisher)
Created2017
149661-Thumbnail Image.png
Description
Maricopa County has exceeded the 24 hour National Ambient Air Quality Standard (NAAQS) for Particulate Matter 10 micrometers in diameter or smaller (PM-10) of 150 micrograms per meter cubed (μg/m3) since 1990. Construction and construction related activities have been recognized as the highest contributors to high PM-10 levels. An analysis

Maricopa County has exceeded the 24 hour National Ambient Air Quality Standard (NAAQS) for Particulate Matter 10 micrometers in diameter or smaller (PM-10) of 150 micrograms per meter cubed (μg/m3) since 1990. Construction and construction related activities have been recognized as the highest contributors to high PM-10 levels. An analysis of days exceeding 150 μg/m3 for four of Maricopa County‟s monitors that most frequently exceed this level during the years 2007, 2008, and 2009 has been performed. Noted contributors to PM-10 levels have been identified in the study, including earthmoving permits, stationary source permits, vacant lots, and agriculture on two mile radius maps around each monitor. PM-10 levels and wind speeds for each date exceeding 225 μg/m3 were reviewed to find specific weather or anthropogenic sources for the high PM-10 levels. Weather patterns for days where multiple monitors exceed 150 μg/m3 were reviewed to find correlations between daily weather and high PM-10 levels. It was found that areas with more earthmoving permits had fewer days exceeding 150 μg/m3 than areas with more stationary permits, vacant lots, or agriculture. The Higley and Buckeye monitors showed increases in PM-10 levels when winds came from areas covered by agricultural land. West 43rd Avenue and Durango monitors saw PM-10 rise when the winds came in over large stationary sources, like aggregate plants. A correlation between weather events and PM-10 exceedances was also found on multiple monitors for dates both in 2007, and 2009.
ContributorsCook, Heloise (Author) / Olson, Larry (Thesis advisor) / Brown, Albert (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
154207-Thumbnail Image.png
Description
Since its first report in 1976, many outbreaks linked to Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which is found in two forms, Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of

Since its first report in 1976, many outbreaks linked to Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which is found in two forms, Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in the reported outbreaks of legionellosis. This study consists of an extensive literature review and experimental work on the aerosolization and UV inactivation of E.coli and Legionella under laboratory conditions. The literature review summarizes Legionella general information, occurrence, environmental conditions for its survival, transmission to human, collection and detection methodologies and Legionella disinfection in air and during water treatment processes.

E. coli was used as an surrogate for Legionella in experimentation due to their similar bacterial properties such as size, gram-negative rod-shaped, un-encapsulated and non-spore-forming bacterial cells. The accessibility and non-pathogenicity of E. coli also served as factors for the substitution.

Three methods of bacterial aerosolization were examined, these included an electric spray gun, an air spray gun and a hand-held spray bottle. A set of experiments were performed to examine E. coli aerosolization and transport in the aerosolization chamber (an air tight box) placed in a Biological Safety Cabinet. Spiked sample was sprayed through the opening from one side of the aerosolization chamber using the selected aerosolization methods. The air sampler was placed at the other side to collect 100 L air sample from the aerosolization chamber. A Tryptic Soy Agar plate was placed inside the air sampler to collect and subsequently culture E. coli cells from air. Results showed that the air spray gun has the best capability of aerosolizing bacteria cells under all the conditions examined in this study compared to the other two spray methods. In this study, we provide a practical and efficient method of bacterial aerosolization technique for microbial dispersion in air. The suggested method can be used in future research for microbial dispersion and transmission studies.

A set of experiments were performed to examine UV inactivation of E. coli and Legionella cells in air. Spiked samples were sprayed through the opening from one side of the aerosolization chamber using the air spray gun. A UV-C germicidal lamp inside the Biological Safety Cabinet was turned on after each spray. The air samples were collected as previously described. The application of UV-C for the inactivation of bacterial cells resulted in removing aerosolized E. coli and Legionella cells in air. A 1 log reduction was achieved with 5 seconds UV exposure time while 10 seconds UV exposure resulted in a 2 log bacterial reduction for both bacteria. This study shows the applicability of UV inactivation of pathogenic bacterial cells in air by short UV exposure time. This method may be applicable for the inactivation of Legionella in air ducts by installing germicidal UV lamps for protecting susceptible populations in certain indoor settings such as nursing homes or other community rooms.
ContributorsYao, Wei (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2015