Matching Items (4)
Filtering by

Clear all filters

153232-Thumbnail Image.png
Description
Since its first report in 1976, many outbreaks of Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which cause Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in

Since its first report in 1976, many outbreaks of Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which cause Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in the reported outbreaks. This study consists of an extensive literature review and experimental work on the aerosolization of Legionella and a bacterial surrogate under laboratory conditions. The literature review summarizes Legionella characteristics, legionellosis, potential sources of Legionella, disease outbreaks, collection and detection methodologies, environmental conditions for growth and survival of Legionella, Gaussian plume dispersion modeling, and recommendations for reducing potential Legionella outbreaks. The aerosolization and airborne dispersion of Legionella and E. coli was conducted separately inside of a closed environment. First, the bacterial cells were sprayed inside of an airtight box and then samples were collected using a microbial air sampler to measure the number of bacterial cells aerosolized and transported in air. Furthermore, a Gaussian plume dispersion model was used to estimate the dispersion under the experimental conditions and parameters. The concentration of Legionella was estimated for a person inhaling the air at three different distances away from the spray. The concentration of Legionella at distances of 0.1 km, 1 km, and 10 km away from the source was predicted to be 1.7x10-1, 2.2x10-3, and 2.6x10-5 CFU/m3, respectively.
ContributorsTaghdiri, Sepideh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Estes, Robert (Committee member) / Arizona State University (Publisher)
Created2014
136192-Thumbnail Image.png
Description
Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore,

Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore, the relationship between the microbiome and its host is mutually beneficial because the host is providing microbes with an environment in which they can flourish and, in turn, keep their host healthy. Reviewing examples of larger scale environmental shifts could provide a window by which scientists can make hypotheses. Certain medications and healthcare treatments have been proven to cause xerostomia. This disorder is characterized by a dry mouth, and known to be associated with a change in the composition, and reduction, of saliva. Two case studies performed by Bardow et al, and Leal et al, tested and studied the relationships of certain medications and confirmed their side effects on the salivary glands [2,3]. Their results confirmed a relationship between specific medicines, and the correlating complaints of xerostomia. In addition, Vissink et al conducted case studies that helped to further identify how radiotherapy causes hyposalivation of the salivary glands [4]. Specifically patients that have been diagnosed with oral cancer, and are treated by radiotherapy, have been diagnosed with xerostomia. As stated prior, studies have shown that patients having an ecologically balanced and diverse microbiome tend to have healthier mouths. The oral cavity is like any biome, consisting of commensalism within itself and mutualism with its host. Due to the decreased salivary output, caused by xerostomia, increased parasitic bacteria build up within the oral cavity thus causing dental disease. Every human body contains a personalized microbiome that is essential to maintaining health but capable of eliciting disease. The Human Oral Microbiomics Database (HOMD) is a set of reference 16S rRNA gene sequences. These are then used to define individual human oral taxa. By conducting metagenomic experiments at the molecular and cellular level, scientists can identify and label micro species that inhabit the mouth during parasitic outbreaks or a shifting of the microbiome. Because the HOMD is incomplete, so is our ability to cure, or prevent, oral disease. The purpose of the thesis is to research what is known about xerostomia and its effects on the complex microbiome of the oral cavity. It is important that researchers determine whether this particular perspective is worth considering. In addition, the goal is to create novel experiments for treatment and prevention of dental diseases.
ContributorsHalcomb, Michael Jordan (Author) / Chen, Qiang (Thesis director) / Steele, Kelly (Committee member) / Barrett, The Honors College (Contributor) / College of Letters and Sciences (Contributor)
Created2015-05
152397-Thumbnail Image.png
Description
This thesis research focuses on phylogenetic and functional studies of microbial communities in deep-sea water, an untapped reservoir of high metabolic and genetic diversity of microorganisms. The presence of photosynthetic cyanobacteria and diatoms is an interesting and unexpected discovery during a 16S ribosomal rRNA-based community structure analyses for microbial communities

This thesis research focuses on phylogenetic and functional studies of microbial communities in deep-sea water, an untapped reservoir of high metabolic and genetic diversity of microorganisms. The presence of photosynthetic cyanobacteria and diatoms is an interesting and unexpected discovery during a 16S ribosomal rRNA-based community structure analyses for microbial communities in the deep-sea water of the Pacific Ocean. Both RT-PCR and qRT-PCR approaches were employed to detect expression of the genes involved in photosynthesis of photoautotrophic organisms. Positive results were obtained and further proved the functional activity of these detected photosynthetic microbes in the deep-sea. Metagenomic and metatranscriptomic data was obtained, integrated, and analyzed from deep-sea microbial communities, including both prokaryotes and eukaryotes, from four different deep-sea sites ranging from the mesopelagic to the pelagic ocean. The RNA/DNA ratio was employed as an index to show the strength of metabolic activity of deep-sea microbes. These taxonomic and functional analyses of deep-sea microbial communities revealed a `defensive' life style of microbial communities living in the deep-sea water. Pseudoalteromonas sp.WG07 was subjected to transcriptomic analysis by application of RNA-Seq technology through the transcriptomic annotation using the genomes of closely related surface-water strain Pseudoalteromonas haloplanktis TAC125 and sediment strain Pseudoalteromonas sp. SM9913. The transcriptome survey and related functional analysis of WG07 revealed unique features different from TAC125 and SM9913 and provided clues as to how it adapted to its environmental niche. Also, a comparative transcriptomic analysis of WG07 revealed transcriptome changes between its exponential and stationary growing phases.
ContributorsWu, Jieying (Author) / Meldrum, Deirdre R. (Thesis advisor) / Zhang, Weiwen (Committee member) / Abbaszadegan, Morteza (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2013
154207-Thumbnail Image.png
Description
Since its first report in 1976, many outbreaks linked to Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which is found in two forms, Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of

Since its first report in 1976, many outbreaks linked to Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which is found in two forms, Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in the reported outbreaks of legionellosis. This study consists of an extensive literature review and experimental work on the aerosolization and UV inactivation of E.coli and Legionella under laboratory conditions. The literature review summarizes Legionella general information, occurrence, environmental conditions for its survival, transmission to human, collection and detection methodologies and Legionella disinfection in air and during water treatment processes.

E. coli was used as an surrogate for Legionella in experimentation due to their similar bacterial properties such as size, gram-negative rod-shaped, un-encapsulated and non-spore-forming bacterial cells. The accessibility and non-pathogenicity of E. coli also served as factors for the substitution.

Three methods of bacterial aerosolization were examined, these included an electric spray gun, an air spray gun and a hand-held spray bottle. A set of experiments were performed to examine E. coli aerosolization and transport in the aerosolization chamber (an air tight box) placed in a Biological Safety Cabinet. Spiked sample was sprayed through the opening from one side of the aerosolization chamber using the selected aerosolization methods. The air sampler was placed at the other side to collect 100 L air sample from the aerosolization chamber. A Tryptic Soy Agar plate was placed inside the air sampler to collect and subsequently culture E. coli cells from air. Results showed that the air spray gun has the best capability of aerosolizing bacteria cells under all the conditions examined in this study compared to the other two spray methods. In this study, we provide a practical and efficient method of bacterial aerosolization technique for microbial dispersion in air. The suggested method can be used in future research for microbial dispersion and transmission studies.

A set of experiments were performed to examine UV inactivation of E. coli and Legionella cells in air. Spiked samples were sprayed through the opening from one side of the aerosolization chamber using the air spray gun. A UV-C germicidal lamp inside the Biological Safety Cabinet was turned on after each spray. The air samples were collected as previously described. The application of UV-C for the inactivation of bacterial cells resulted in removing aerosolized E. coli and Legionella cells in air. A 1 log reduction was achieved with 5 seconds UV exposure time while 10 seconds UV exposure resulted in a 2 log bacterial reduction for both bacteria. This study shows the applicability of UV inactivation of pathogenic bacterial cells in air by short UV exposure time. This method may be applicable for the inactivation of Legionella in air ducts by installing germicidal UV lamps for protecting susceptible populations in certain indoor settings such as nursing homes or other community rooms.
ContributorsYao, Wei (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2015