Matching Items (2)

Filtering by

Clear all filters

155949-Thumbnail Image.png

Bowties, barcodes, and DNA origami: a novel approach for paired-chain immune receptor repertoire analysis

Description

There are many biological questions that require single-cell analysis of gene sequences, including analysis of clonally distributed dimeric immunoreceptors on lymphocytes (T cells and B cells) and/or the accumulation of

There are many biological questions that require single-cell analysis of gene sequences, including analysis of clonally distributed dimeric immunoreceptors on lymphocytes (T cells and B cells) and/or the accumulation of driver/accessory mutations in polyclonal tumors. Lysis of bulk cell populations results in mixing of gene sequences, making it impossible to know which pairs of gene sequences originated from any particular cell and obfuscating analysis of rare sequences within large populations. Although current single-cell sorting technologies can be used to address some of these questions, such approaches are expensive, require specialized equipment, and lack the necessary high-throughput capacity for comprehensive analysis. Water-in-oil emulsion approaches for single cell sorting have been developed but droplet-based single-cell lysis and analysis have proven inefficient and yield high rates of false pairings. Ideally, molecular approaches for linking gene sequences from individual cells could be coupled with next-generation high-throughput sequencing to overcome these obstacles, but conventional approaches for linking gene sequences, such as by transfection with bridging oligonucleotides, result in activation of cellular nucleases that destroy the template, precluding this strategy. Recent advances in the synthesis and fabrication of modular deoxyribonucleic acid (DNA) origami nanostructures have resulted in new possibilities for addressing many current and long-standing scientific and technical challenges in biology and medicine. One exciting application of DNA nanotechnology is the intracellular capture, barcode linkage, and subsequent sequence analysis of multiple messenger RNA (mRNA) targets from individual cells within heterogeneous cell populations. DNA nanostructures can be transfected into individual cells to capture and protect mRNA for specific expressed genes, and incorporation of origami-specific bowtie-barcodes into the origami nanostructure facilitates pairing and analysis of mRNA from individual cells by high-throughput next-generation sequencing. This approach is highly modular and can be adapted to virtually any two (and possibly more) gene target sequences, and therefore has a wide range of potential applications for analysis of diverse cell populations such as understanding the relationship between different immune cell populations, development of novel immunotherapeutic antibodies, or improving the diagnosis or treatment for a wide variety of cancers.

Contributors

Agent

Created

Date Created
  • 2017

156663-Thumbnail Image.png

The Adjuvant Properties of RNA Origami for Immunotherapy in a CT26 Cancer Model

Description

The properties of adjuvants to stimulate an immune response to treat cancer has sparked a major area of research in the field of immunotherapy. Given the presence of multiple RNA

The properties of adjuvants to stimulate an immune response to treat cancer has sparked a major area of research in the field of immunotherapy. Given the presence of multiple RNA sensors in mammalian host cells for eliciting innate immunity, synthetic RNA nanostructures present a unique opportunity for adjuvant exploration. While RNA nanostructures are organic and biocompatible in nature than other adjuvants, they could be tailored to have desired structural stability and functional diversity for in vivo application. In this study, a rectangular RNA origami nanostructure was designed to contain double-stranded RNA motifs and possess high structural stability. Using in vitro assays, RNA origami was shown to stimulate the toll-like receptor 3 (TLR3) signaling pathway, which has been reported to activate antigen presenting cells (APCs), natural killer (NK) cells, cluster of differentiation 8 (CD8) T-cells, and the secretion of proinflammatory cytokines. To explore RNA origami as an adjuvant for cancer immunotherapy, intraperitoneal administration of a murine colon cancer cell line (CT26) was used as a model system to mimic peritoneal metastasis (PM), in which RNA origami was investigated for its activities in mitigating PM tumor microenvironment and improving anti-tumor immunity. Given the poor outcome of the patients with PM and urgent need for new interventions, this study aims to translate the adjuvant activities of RNA origami demonstrated in vitro into potent anti-cancer immunotherapeutics. Here, it was shown that multiple intraperitoneal injections of RNA origami could inhibit tumor growth, leading to a significant delay and/or regression of metastatic tumor growth in the peritoneum. Furthermore, tumor-free mice, after being treated with RNA origami, were also resistant to a second challenge of tumor cells, indicating the development of the adaptive anti-tumor immunity. This immunity is dependent on T-cells since nude mice succumbed to tumor growth with or without RNA origami treatment. Thus, RNA-origami can function as an adjuvant to activate the innate immunity and subsequently the adaptive anti-tumor immunity, leading to tumor regression. Conceivably, RNA origami could be explored as an immunotherapeutic agent to improve the disease outcome of patients with peritoneal metastasis and peritoneal carcinogenesis.

Contributors

Agent

Created

Date Created
  • 2018