Matching Items (2)
Filtering by

Clear all filters

154093-Thumbnail Image.png
Description
Hydrological models in arid and semi-arid ecosystems can be subject to high uncertainties. Spatial variability in soil moisture and evapotranspiration, key components of the water cycle, can contribute to model uncertainty. In particular, an understudied source of spatial variation is the effect of plant-plant interactions on water fluxes. At patch

Hydrological models in arid and semi-arid ecosystems can be subject to high uncertainties. Spatial variability in soil moisture and evapotranspiration, key components of the water cycle, can contribute to model uncertainty. In particular, an understudied source of spatial variation is the effect of plant-plant interactions on water fluxes. At patch scales (plant and associated soil), plant neighbors can either negatively or positively affect soil water availability via competition or hydraulic redistribution, respectively. The aboveground microclimate can also be altered via canopy shading effects by neighbors. Across longer timescales (years), plants may adjust their physiological (water-use) traits in response to the neighbor-altered microclimate, which subsequently affects transpiration rates. The influence of physiological adjustments and neighbor-altered microclimate on water fluxes was assessed around Larrea tridentata in the Sonoran Desert. Field measurements of Larrea’s stomatal behavior and vertical root distributions were used to examine the effects of neighbors on Larrea’s physiological controls on transpiration. A modeling based approach was implemented to explore the sensitivity of evapotranspiration and soil moisture to neighbor effects. Neighbors significantly altered both above- and belowground physiological controls on evapotranspiration. Compared to Larrea growing alone, neighbors increased Larrea’s annual transpiration by up to 75% and 30% at the patch and stand scales, respectively. Estimates of annual transpiration were highly sensitive to the presence/absence of competition for water, and on seasonal timescales, physiological adjustments significantly influenced transpiration estimates. Plant-plant interactions can be a significant source of spatial variation in ecohydrological models, and both physiological adjustments to neighbors and neighbor effects on microclimate affect small scale (patch to ecosystem) water fluxes.
ContributorsKropp, Heather (Author) / Ogle, Kiona (Thesis advisor) / Hultine, Kevin (Committee member) / Sala, Osvaldo (Committee member) / Vivoni, Enrique (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2015
157712-Thumbnail Image.png
Description
This project was completed to understand the evolution of the ability to digest wood in termite symbiotic protists. Lower termites harbor bacterial and protist symbionts which are essential to the termite ability to use wood as a nutritional source, producing glycoside hydrolases to break down the polysaccharides found in lignocellulose.

This project was completed to understand the evolution of the ability to digest wood in termite symbiotic protists. Lower termites harbor bacterial and protist symbionts which are essential to the termite ability to use wood as a nutritional source, producing glycoside hydrolases to break down the polysaccharides found in lignocellulose. Yet, only a few molecular studies have been done to confirm the protist species responsible for particular enzymes. By mining publicly available and newly generated genomic and transcriptomic data, including three transcriptomes from isolated protist cells, I identify over 200 new glycoside hydrolase sequences and compute the phylogenies of eight glycoside hydrolase families (GHFs) reported to be expressed by termite hindgut protists.

Of those families examined, the results are broadly consistent with Todaka et al. 2010, though none of the GHFs found were expressed in both termite-associated protist and non-termite-associated protist transcriptome data. This suggests that, rather than being inherited from their free-living protist ancestors, GHF genes were acquired by termite protists while within the termite gut, potentially via lateral gene transfer (LGT). For example one family, GHF10, implies a single acquisition of a bacterial xylanase into termite protists. The phylogenies from GHF5 and GHF11 each imply two distinct acquisitions in termite protist ancestors, each from bacteria. In eukaryote-dominated GHFs, GHF7 and GHF45, there are three apparent acquisitions by termite protists. Meanwhile, it appears prior reports of GHF62 in the termite gut may have been misidentified GHF43 sequences. GHF43 was the only GHF found to contain sequences from the protists not found in the termite gut. These findings generally all support the possibility termite-associated protists adapted to a lignocellulosic diet after colonization of the termite hindgut. Nonetheless, the poor resolution of GHF phylogeny and limited termite and protist sampling constrain interpretation.
ContributorsSanderlin, Viola (Author) / Gile, Gillian H (Thesis advisor) / Wojciechowski, Martin (Committee member) / Weiss, Taylor (Committee member) / Varman, Arul Mozhy (Committee member) / Arizona State University (Publisher)
Created2019