Matching Items (16)

136869-Thumbnail Image.png

Smart Phone Camera Used to Determine Ion Concentration in Saliva Based on Fluorescence Level

Description

The use of saliva sampling as a noninvasive way for drug analysis as well as the monitoring systems within the body has become increasingly important in recent research. Because of

The use of saliva sampling as a noninvasive way for drug analysis as well as the monitoring systems within the body has become increasingly important in recent research. Because of the growing interest in saliva, this project proposes a way to analyze sodium ion concentration in a saliva solution based on its fluorescence level when in the presence of a sodium indicator dye and recorded with a smartphone camera. The dyed sample was placed in a specially designed housing to exclude all ambient light from the images. A source light of known wavelength was used to excite the fluorescent dye and the smartphone camera images recorded the emission light wavelengths. After analysis of the images using ImageJ, it was possible to create a model to determine the level of fluorescence based on sodium ion concentration. The smartphone camera image model was compared to readings from a standard fluorescence plate recorder to test the accuracy of the model. The study found that the model was accurate within 5 % as compared to the fluorescence plate recorder. Based on the results, it was concluded that the method and resulting model proposed in this study is a valid was to analyze saliva or other solutions for their sodium ion concentration via images recorded by a smartphone camera.

Contributors

Agent

Created

Date Created
  • 2014-05

137458-Thumbnail Image.png

Combined AFM and Fluorescence Measurements for the Investigation of Nanophotonic Effects on Single Fluorophores

Description

In this project, we introduce a type of microscopy which produces correlated topography and fluorescence lifetime images with nanometer resolution. This technique combines atomic force microscopy (AFM) and time resolved

In this project, we introduce a type of microscopy which produces correlated topography and fluorescence lifetime images with nanometer resolution. This technique combines atomic force microscopy (AFM) and time resolved confocal fluorescence microscopy to conduct biological and materials research. This method is used to investigate nanophotonic effects on single fluorophores, including quantum dots and fluorescent molecules. For single fluorescent molecules, we investigate the effects of quenching of fluorescence with the probe of an atomic force microscope which is combined and synchronized with a confocal fluorescence lifetime microscope. For quantum dots, we investigate the correlation between the topographic and fluorescence data. With this method of combining an atomic force microscope with a confocal microscope, it is anticipated that there will be applications in nanomaterial characterization and life sciences; such as the determination of the structure of small molecular systems on surfaces, molecular interactions, as well as the structure and properties of fluorescent nanomaterials.

Contributors

Agent

Created

Date Created
  • 2013-05

136057-Thumbnail Image.png

Photophysical Studies of the DNA Microenvironment and Small Molecule-DNA Interactions

Description

Photophysical Studies of the DNA Microenvironment and Small Molecule-DNA Interactions
The photophysical properties of ethidium in a variety of organic solvents, as well as several dsDNAs, were measured. We

Photophysical Studies of the DNA Microenvironment and Small Molecule-DNA Interactions
The photophysical properties of ethidium in a variety of organic solvents, as well as several dsDNAs, were measured. We report that the fluorescence quantum yield of intercalated ethidium is .30(.03), which falls between previous stated measurements of .14 and .60. We believe this to be the most accurately measured fluorescence quantum yield to date, as verified by Strickler-Berg analyses, which exhibit excellent agreement with experimental fluorescence lifetimes. A marked hypochromism upon binding to DNA is noted due to interactions of the dye’s and nucleobases’ respective π-stacks. This more than counteracts the expected increase in transition dipole due to increased conjugation caused by twisting of the phenyl moiety upon intercalation.
The reduced volume cylinder model was tested by the quenching of the fluorescence of an intercalator (ethidium bromide) by a groove binder (methyl viologen). We report that the model is not accurate over a relevant range of DNA concentrations.

Contributors

Agent

Created

Date Created
  • 2005-05

136066-Thumbnail Image.png

A Novel Temperature-Sensitive MR & Fluorescence Imaging Contrast Agent

Description

Contrast agents in medical imaging can help visualize structural details, distributions of particular cell types, or local environment characteristics. Multi-modal imaging techniques have become increasingly popular for their improved sensitivity,

Contrast agents in medical imaging can help visualize structural details, distributions of particular cell types, or local environment characteristics. Multi-modal imaging techniques have become increasingly popular for their improved sensitivity, resolution, and ability to correlate structural and functional information. This study addresses the development of dual-modality (magnetic resonance/fluorescence) and dual-functional (thermometry/detection) nanoprobes for enhanced tissue imaging.

Contributors

Agent

Created

Date Created
  • 2015-05

152445-Thumbnail Image.png

Evaluating and controlling glioblastoma infiltration

Description

Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months.

Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain. For this reason, the infiltrative nature of GBM is an obstacle to its complete resection. We hypothesize that targeting genes and proteins that regulate GBM motility, and developing techniques that safely enhance extent of surgical resection, will improve GBM patient survival by decreasing infiltration into eloquent brain regions and enhancing tumor cytoreduction during surgery. Chapter 2 of this dissertation describes a gene and protein we identified; aquaporin-1 (aqp1) that enhances infiltration of GBM. In chapter 3, we describe a method for enhancing the diagnostic yield of GBM patient biopsies which will assist in identifying future molecular targets for GBM therapies. In chapter 4 we develop an intraoperative optical imaging technique that will assist identifying GBM and its infiltrative margins during surgical resection. The topic of this dissertation aims to target glioblastoma infiltration from molecular and cellular biology and neurosurgical disciplines. In the introduction we; 1. Provide a background of GBM and current therapies. 2. Discuss a protein we found that decreases GBM survival. 3. Describe an imaging modality we utilized for improving the quality of accrued patient GBM samples. 4. We provide an overview of intraoperative contrast agents available for neurosurgical resection of GBM, and discuss a new agent we studied for intraoperative visualization of GBM.

Contributors

Agent

Created

Date Created
  • 2014

154132-Thumbnail Image.png

Utilization of fluorescent microspheres as a surrogate for Cryptosporidium removal in conventional drinking water treatment

Description

The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration

The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as the system to model. The city of Chandler Arizona utilizes conventional treatment methodologies to remove pathogens from municipal drinking water and thus the water, coagulant, polymer, and doses concentrations were sourced directly from the plant. Jar testing was performed on four combinations of coagulant, polymer, and fluorescent microsphere to determine if the log removal was similar to that of Cryptosporidium oocysts.

Complications with the material properties of the microspheres arose during testing that ultimately yielded unfavorable but conclusive results. Log removal of microspheres did not increase with added coagulant in the predicted manner, though the beads were seen aggregating, the low density of the particles made the sedimentation step inefficient. This result can be explained by the low density of the microspheres as well as the potential presence of residual coagulant present in the system. Given the unfavorable properties of the beads, they do not appear to be a suitable candidate for the surrogacy of Cryptosporidium oocysts in conventional drinking water treatment. The beads in their current state are not an adequate surrogate; however, future testing has been outlined to modify the experiment in such a way that the microspheres should behave like oocysts in terms of physical transportation.

Contributors

Agent

Created

Date Created
  • 2015

150141-Thumbnail Image.png

Nano- and micro-scale temperature measurements using laser-induced fluorescence thermometry

Description

A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these

A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and their respective temperatures established simultaneously. Polystyrene and silica nanoparticles are synthesized with a variety of temperature-sensitive dyes such as BODIPY, rose Bengal, Rhodamine dyes 6G, 700, and 800, and Nile Blue A and Nile Red. Photographs are taken with a QImaging QM1 Questar EXi Retiga camera while particles are heated from 25 to 70 C and excited at 532 nm with a Coherent DPSS-532 laser. Photographs are converted to intensity images in MATLAB and analyzed for fluorescence intensity, and plots are generated in MATLAB to describe each dye's intensity vs temperature. Regression curves are created to describe change in fluorescence intensity over temperature. Dyes are compared as nanoparticle core material is varied. Large particles are also created to match the camera's optical resolution capabilities, and it is established that intensity values increase proportionally with nanoparticle size. Nile Red yielded the closest-fit model, with R2 values greater than 0.99 for a second-order polynomial fit. By contrast, Rhodamine 6G only yielded an R2 value of 0.88 for a third-order polynomial fit, making it the least reliable dye for temperature measurements using the polynomial model. Of particular interest in this work is Nile Blue A, whose fluorescence-temperature curve yielded a much different shape from the other dyes. It is recommended that future work describe a broader range of dyes and nanoparticle sizes, and use multiple excitation wavelengths to better quantify each dye's quantum efficiency. Further research into the effects of nanoparticle size on fluorescence intensity levels should be considered as the particles used here greatly exceed 2 ìm. In addition, Nile Blue A should be further investigated as to why its fluorescence-temperature curve did not take on a characteristic shape for a temperature-sensitive dye in these experiments.

Contributors

Agent

Created

Date Created
  • 2011

155504-Thumbnail Image.png

Photophysics of symmetric and asymmetric cyanines in solution and conjugated to biomolecules

Description

Fluorescence spectroscopy is a powerful tool for biophysical studies due to its high sensitivity and broad availability. It is possible to detect fluorescence from single molecules allowing researchers to

Fluorescence spectroscopy is a powerful tool for biophysical studies due to its high sensitivity and broad availability. It is possible to detect fluorescence from single molecules allowing researchers to see the behavior of subpopulations whose presence is obscured by “bulk” collection methods. The fluorescent probes used in these experiments are affected by the solution and macromolecular environments they are in. A misunderstanding of a probe’s photophysics can lead researchers to assign observed behavior to biomolecules, when in fact the probe is responsible. On the other hand, a probe’s photophysical behavior is a signature of the environment surrounding it; it can be exploited to learn about the biomolecule(s) under study. A thorough examination of a probe’s photophysics is critical to data interpretation in both cases and is the focus of this work. This dissertation investigates the photophysical behavior of symmetric and asymmetric cyanines in a variety of solution and biomolecular environments. Using fluorescent techniques—such as time-correlated single photon counting (TCSPC) and fluorescence correlation spectroscopy (FCS)—it was found that cyanines are influenced by the local environment. In the first project, the symmetric cyanines are found to be susceptible to paramagnetic species, such as manganese(II), that enhance the intersystem crossing (ISC) rate increasing triplet blinking and accelerating photobleaching. Another project found the increase in fluorescence of Cy3 in the protein induced fluorescence enhancement (PIFE) technique is due to reduced photoisomerization caused by the proximity of protein to Cy3. The third project focused on asymmetric cyanines; their photophysical behavior has not been previously characterized. Dy630 as a free dye behaves like Cy3; it has a short lifetime and can deactivate via photoisomerization. Preliminary experiments on Dy dyes conjugated to DNA show these dyes do not photoisomerize, and do not show PIFE potential. Further research will explore other conjugation strategies, with the goal of optimizing conditions in which Dy630 can be used as the red-absorbing analogue of Cy3 for PIFE applications. In summary, this dissertation focused on photophysical investigations, the understanding of which forms the backbone of rigorous fluorescent studies and is vital to the development of the fluorescence field.

Contributors

Agent

Created

Date Created
  • 2017

158352-Thumbnail Image.png

Visualization of Brain Tumors with Intraoperative Confocal Laser Endomicroscopy

Description

Intraoperative diagnosis in neurosurgery has traditionally relied on frozen and formalin-fixed, paraffin-embedded section analysis of biopsied tissue samples. Although this technique is considered to be the “gold standard” for establishing

Intraoperative diagnosis in neurosurgery has traditionally relied on frozen and formalin-fixed, paraffin-embedded section analysis of biopsied tissue samples. Although this technique is considered to be the “gold standard” for establishing a histopathologic diagnosis, it entails a number of significant limitations such as invasiveness and the time required for processing and interpreting the tissue. Rapid intraoperative diagnosis has become possible with a handheld confocal laser endomicroscopy (CLE) system. Combined with appropriate fluorescent stains or labels, CLE provides an imaging technique for real-time intraoperative visualization of histopathologic features of the suspected tumor and healthy tissues.

This thesis scrutinizes CLE technology for its ability to provide real-time intraoperative in vivo and ex vivo visualization of histopathological features of the normal and tumor brain tissues. First, the optimal settings for CLE imaging are studied in an animal model along with a generational comparison of CLE performance. Second, the ability of CLE to discriminate uninjured normal brain, injured normal brain and tumor tissues is demonstrated. Third, CLE was used to investigate cerebral microvasculature and blood flow in normal and pathological conditions. Fourth, the feasibility of CLE for providing optical biopsies of brain tumors was established during the fluorescence-guided neurosurgical procedures. This study established the optimal workflow and confirmed the high specificity of the CLE optical biopsies. Fifth, the feasibility of CLE was established for endoscopic endonasal approaches and interrogation of pituitary tumor tissue. Finally, improved and prolonged near wide-field fluorescent visualization of brain tumor margins was demonstrated with a scanning fiber endoscopy and 5-aminolevulinic acid.

These studies suggested a novel paradigm for neurosurgery-pathology workflow when the noninvasive intraoperative optical biopsies are used to interrogate the tissue and augment intraoperative decision making. Such optical biopsies could shorten the time for obtaining preliminary information on the histological composition of the tissue of interest and may lead to improved diagnostics and tumor resection. This work establishes a basis for future in vivo optical biopsy use in neurosurgery and planning of patient-related outcome studies. Future studies would lead to refinement and development of new confocal scanning technologies making noninvasive optical biopsy faster, convenient and more accurate.

Contributors

Agent

Created

Date Created
  • 2020

153074-Thumbnail Image.png

Development of mehanochemically active polymers for early damage detection

Description

Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage

Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation, have received increasing attention. More specifically, the damage can be made detectable by mechanochromic polymers, which provide a visible color change upon the scission of covalent bonds under stress. This dissertation focuses on the study of a novel self-sensing framework for identifying early and in-situ damage by employing unique stress-sensing mechanophores. Two types of mechanophores, cyclobutane and cyclooctane, were utilized, and the former formed from cinnamoyl moeities and the latter formed from anthracene upon photodimerization. The effects on the thermal and mechanical properties with the addition of the cyclobutane-based polymers into epoxy matrices were investigated. The emergence of cracks was detected by fluorescent signals at a strain level right after the yield point of the polymer blends, and the fluorescence intensified with the accumulation of strain. Similar to the mechanism of fluorescence emission from the cleavage of cyclobutane, the cyclooctane moiety generated fluorescent emission with a higher quantum yield upon cleavage. The experimental results also demonstrated the success of employing the cyclooctane type mechanophore as a potential force sensor, as the fluorescence intensification was correlated with the strain increase.

Contributors

Agent

Created

Date Created
  • 2014