Matching Items (12)
153308-Thumbnail Image.png
Description
Bacteria of the Legionella genus are a water-borne pathogen of increasing concern due to being responsible for more annual drinking water related disease outbreaks in the United States than all other microbes combined. Unfortunately, the development of public health policies concerning Legionella has impeded by several key factors,

Bacteria of the Legionella genus are a water-borne pathogen of increasing concern due to being responsible for more annual drinking water related disease outbreaks in the United States than all other microbes combined. Unfortunately, the development of public health policies concerning Legionella has impeded by several key factors, including a paucity of data on their interactions and growth requirements in water distribution networks, a poor understanding of potential transmission sources for legionellosis, and limitations in current methodology for the characterization of these pathogens. To address these issues, a variety of research approaches were taken. By measuring Legionella survival in tap water, association in pipe material biofilms, population dynamics in a model distribution system, and occurrence in drinking water distribution system biofilms, key aspects of Legionella ecology in drinking water systems were revealed. Through a series of experiments qualitatively and quantitatively examining the growth of Legionella via nutrients obtained from several water sources, environmental nutritional requirements and capability for growth in the absence of host organisms were demonstrated. An examination of automobile windshield washer fluid as a possible source of legionellosis transmission revealed Legionella survival in certain windshield washer fluids, growth within washer fluid reservoirs, high levels and frequency of contamination in washer fluid reservoirs, and the presence of viable cells in washer fluid spray, suggesting the potential for exposure to Legionella from this novel source. After performing a systematic and quantitative analysis of methodology optimization for the analysis of Legionella cells via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, several strains of this microbe isolated from separated and varied environmental water sampling sites were distinctly typed, demonstrating a potential application of this technology for the characterization of Legionella. The results from this study provide novel insight and methodology relevant to the development of programs for the monitoring and treatment of Legionella in drinking water systems.
ContributorsSchwake, David Otto (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2014
153234-Thumbnail Image.png
Description
Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due

Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due to increased growth, microbiological quality of drinking water is compromised and regrowth in the distribution system occurs. Bacteria attached to carbon particles as biofilms or in conjugation with other bacteria were observed to be highly resistant to post filtration microbial mitigation techniques. Some of these bacteria were identified as pathogenic.

This study focuses on one such pathogen Legionella pneumophila which is resistant to environmental stressors and treatment conditions. It is also responsible for Legionnaires' disease outbreak through drinking water thus attracting attention of regulatory agencies. The work assessed the attachment and colonization of Legionella and heterotrophic bacteria in lab scale GAC media column filters. Quantification of Legionella and HPC in the influent, effluent, column's biofilms and on the GAC particles was performed over time using fluorescent microscopy and culture based techniques.

The results indicated gradual increase in the colonization of the GAC particles with HPC bacteria. Initially high number of Legionella cells were detected in the column effluent and were not detected on GAC suggesting low attachment of the cells to the particles potentially due to lack of any previous biofilms. With the initial colonization of the filter media by other bacteria the number of Legionella cells on the GAC particles and biofilms also increased. Presence of Legionella was confirmed in all the samples collected from the columns spiked with Legionella. Significant increase in the Legionella was observed in column's inner surface biofilm (0.25 logs up to 0.52 logs) and on GAC particles (0.42 logs up to 0.63 logs) after 2 months. Legionella and HPC attached to column's biofilm were higher than that on GAC particles indicating the strong association with biofilms. The bacterial concentration slowly increased in the effluent. This may be due to column's wall effect decreasing filter efficiency, possible exhaustion of GAC capacity over time and potential bacterial growth.
ContributorsSharma, Harsha (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
153246-Thumbnail Image.png
Description
This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column

This study was devised to elucidate key information concerning the potential risk posed by Legionella in reclaimed water. A series of biological experiments and a recharge basin soil column study were conducted to examine the survival, growth, and transport of L. pneumophila through engineered reclaimed water systems. A pilot-scale, column study was set up to measure Legionella transport in the columns under Arizona recharge basin conditions. Two columns, A and B, were packed to a depth of 122 cm with a loamy sand media collected from a recharge basin in Mesa, Arizona. The grain size distribution of Column A differed from that of Column B by the removal of fines passing the #200 sieve. The different soil profiles represented by column A and B allowed for further investigation of soil attributes which influence the microbial transport mechanism. Both clear PVC columns stand at a height of 1.83 m with an inner diameter of 6.35 cm. Sampling ports were drilled into the column at the soil depths 15, 30, 60, 92, 122 cm. Both columns were acclimated with tertiary treated waste water and set to a flow rate of approximately 1.5 m/d. The columns were used to assess the transport of a bacterial indicator, E. coli, in addition to assessing the study's primary pathogen of concern, Legionella. Approximately, 〖10〗^7 to 〖10〗^9 E. coli cells or 〖10〗^6 to 〖10〗^7Legionella cells were spiked into the columns' head waters for each experiment. Periodically, samples were collected from each column's sampling ports, until a minimum of three pore volume passed through the columns.

The pilot-scale, column study produced novel results which demonstrated the mechanism for Legionella to be transported through recharge basin soil. E. coli was transported, through 122 cm of the media in under 6 hours, whereas, Legionella was transported, through the same distance, in under 30 hours. Legionella has been shown to survive in low nutrient conditions for over a year. Given the novel results of this proof of concept study, a claim can be made for the transport of Legionella into groundwater aquifers through engineering recharge basin conditions, in Central Arizona.
ContributorsMcBurnett, Lauren Rae (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
156429-Thumbnail Image.png
Description
Legionella pneumophila is a waterborne pathogen that causes Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. In a culture-based technique, Legionella is detected using buffered charcoal-yeast extract (BCYE) agar supplemented with L-cysteine, Iron salt and antibiotics. These supplements provide essential and complex nutrient requirements and help in

Legionella pneumophila is a waterborne pathogen that causes Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. In a culture-based technique, Legionella is detected using buffered charcoal-yeast extract (BCYE) agar supplemented with L-cysteine, Iron salt and antibiotics. These supplements provide essential and complex nutrient requirements and help in the suppression of non-target bacteria in Legionella analysis. Legionella occurs naturally in freshwater environments and for their detection; a sample is plated on solid agar media and then incubated for several days. There are many challenges in the detection of Legionella in environmental waters and the built environments. A common challenge is that a variety of environmental bacteria can be presumptively identified as Legionella using the culture-based method. In addition, proper identification of Legionella requires long incubation period (3-9 days) while antibiotics used in BCYE agar have relatively short half-life time. In order to overcome some of the challenges, Legionella has been genetically modified to express reporter genes such Green Fluorescent Protein (GFP) that can facilitate its detection in process validation studies under controlled laboratory conditions. However, such studies had limited success due to the instability of genetically modified Legionella strains. The development of a genetically modified Legionella with a much rapid growth rate (1-2 days) in simulated environmental systems (tightly-controlled water distribution system) is achieved. The mutant Legionella is engineered by transforming with a specific plasmid encoding CymR, LacZ and TetR genes. The newly engineered Legionella can grow on conventional BCYE agar media without L-Cysteine, Iron salt and only require one antibiotic (Tetracycline) to suppress the growth of other microorganisms in media. To the best of our knowledge, this is the first report of L. pneumophila strain capable of growing without L-Cysteine. We believe that this discovery would not only facilitate the study of the fate and transport of this pathogen in environmental systems, but also further our understanding of the genetics and metabolic pathways of Legionella.
ContributorsAloraini, Saleh Ali A (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2018
135949-Thumbnail Image.png
Description
Legionella is a gram-negative bacterium with the ability for human infection by inhalation or aspiration of water containing the bacteria. Legionella live in aquatic environments and have been identified in cooling towers, humidifiers and respiratory therapy treatments, among others. Infection with Legionella bacteria leads to Legionnaire’s Disease or Pontiac Fever

Legionella is a gram-negative bacterium with the ability for human infection by inhalation or aspiration of water containing the bacteria. Legionella live in aquatic environments and have been identified in cooling towers, humidifiers and respiratory therapy treatments, among others. Infection with Legionella bacteria leads to Legionnaire’s Disease or Pontiac Fever (Edelstein, 1993). Information regarding the means of aerosolization of Legionella bacteria has not yet been reported, therefore the relevance of experimentation was defined. The objective of this study is to determine the modes by which bacteria may be aerosolized under laboratory conditions. Specifically, to measure the amount of bacteria transported over a specific distance in a given amount of time and determine the most effective mode of bacterial aerosolization. Three methods of bacterial aerosolization were tested, these included an electric paint sprayer, an air paint sprayer and a hand-held spray bottle. E. coli was used as a surrogate for Legionella in experimentation due to its similar bacterial properties. Both bacteria are gram-negative, aerobic bacilli while Legionella is approximately 2 μm in length (Botzenhart, 1998), and E. coli is between 1 and 3 μm in length (Reshes, 2007). The accessibility and non-pathogenicity of E. coli also served as factors for the substitution.
In order to measure the aerosolization efficiency of each spray method, an air sampler was placed opposite to the position of the sprayer, on either side of a sealed box. Each sprayer was filled with E. coli concentrated at 104 CFU/ml in a PBS solution and sprayed for a time span of 1 and 5 seconds. For each of these time intervals an air sample was collected immediately following the spray as well as 5 minutes after the spray. Compared to the other two methods, the air spray method consistently showed the highest number of bacterial cells aerosolized. While all three methods resulted in the aerosolization of bacteria, the results determined the Air Spray method as the most efficient means of bacterial aerosolization. In this study, we provide a practical and efficient method of bacterial aerosolization for microbial dispersion in air. The suggested method can be used in future research for microbial dispersion and transmission studies.
In addition, a humidifier was filled with a spiked solution of E. coli and operated for a period of 1 and 5 seconds at its maximum output. Air samples were collected after 0 and 5 minutes. Immediately after the humidifier operation was stopped a small number of colonies were detected in the air sample and no colonies were detected in the air sample collected after a 5-minute elapsed time. This experiment served as a proof of concept for airborne pathogen’s transmission by a humidifier.
ContributorsJohnson, Chelsea Elizabeth (Author) / Abbaszadegan, Morteza (Thesis director) / Stout, Valerie (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
141315-Thumbnail Image.png
Description

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may not be exclusively good. We reveal implications for the “dark side” of institutional trust by reviewing relevant theories and empirical research that can contribute to a more holistic understanding. We frame our discussion by suggesting there may be a “Goldilocks principle” of institutional trust, where trust that is too low (typically the focus) or too high (not usually considered by trust researchers) may be problematic. The chapter focuses on the issue of too-high trust and processes through which such too-high trust might emerge. Specifically, excessive trust might result from external, internal, and intersecting external-internal processes. External processes refer to the actions institutions take that affect public trust, while internal processes refer to intrapersonal factors affecting a trustor’s level of trust. We describe how the beneficial psychological and behavioral outcomes of trust can be mitigated or circumvented through these processes and highlight the implications of a “darkest” side of trust when they intersect. We draw upon research on organizations and legal, governmental, and political systems to demonstrate the dark side of trust in different contexts. The conclusion outlines directions for future research and encourages researchers to consider the ethical nuances of studying how to increase institutional trust.

ContributorsNeal, Tess M.S. (Author) / Shockley, Ellie (Author) / Schilke, Oliver (Author)
Created2016
Description

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background knowledge, a literature review was conducted to identify similar studies and collect relevant and timely research similar to the subject. The information gathered from the literature review was used to structure the sampling process and parameters. Using the research collected from the literature review, a review table was created to summarize the differences in the studies conducted and to determine research gaps. To categorize the studies, intervention methods, contaminants addressed, and water quality meta-data were differentiated for each of the articles. For the purpose of the sampling process, the three interventions analyzed consist of flushing, water heater set point change, and both flushing and water heater set point change. The locations of the sampling consisted of the city drinking water inlet, the basement janitor's closet, basement shower, 2nd floor, 3rd floor, and 7th floor break rooms and restrooms of the Interdisciplinary Science and Technology Building IV at ASU. For the flushing intervention, the sampling results demonstrated an increase in free and total chlorine concentration post flushing which aligns with the research found in the literature review. In addition, it was observed that iron concentrations drastically increased for both the cold and hot water by flushing. There was a significant decrease detected for ATP concentrations post flush in the hot line. However through the sampling session, the flushing intervention did not yield statistically significant results for Legionella concentrations.

ContributorsCahill, Molly (Author) / Call, Kathryn (Co-author) / Johnson, Elizabeth (Co-author) / Kotta, Vishnu (Co-author) / Hamilton, Kerry (Thesis director) / Boyer, Treavor (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2023-05
Description

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background knowledge, a literature review was conducted to identify similar studies and collect relevant and timely research similar to the subject. The information gathered from the literature review was used to structure the sampling process and parameters. Using the research collected from the literature review, a review table was created to summarize the differences in the studies conducted and to determine research gaps. To categorize the studies, intervention methods, contaminants addressed, and water quality meta-data were differentiated for each of the articles. For the purpose of the sampling process, the three interventions analyzed consist of flushing, water heater set point change, and both flushing and water heater set point change. The locations of the sampling consisted of the city drinking water inlet, the basement janitor's closet, basement shower, 2nd floor, 3rd floor, and 7th floor break rooms and restrooms of the Interdisciplinary Science and Technology Building IV at ASU. For the flushing intervention, the sampling results demonstrated an increase in free and total chlorine concentration post flushing which aligns with the research found in the literature review. In addition, it was observed that iron concentrations drastically increased for both the cold and hot water by flushing. There was a significant decrease detected for ATP concentrations post flush in the hot line. However through the sampling session, the flushing intervention did not yield statistically significant results for Legionella concentrations.

ContributorsJohnson, Elizabeth (Author) / Call, Kathryn (Co-author) / Cahill, Molly (Co-author) / Kotta, Vishnu (Co-author) / Hamilton, Kerry (Thesis director) / Boyer, Treavor (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
Description

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background knowledge, a literature review was conducted to identify similar studies and collect relevant and timely research similar to the subject. The information gathered from the literature review was used to structure the sampling process and parameters. Using the research collected from the literature review, a review table was created to summarize the differences in the studies conducted and to determine research gaps. To categorize the studies, intervention methods, contaminants addressed, and water quality meta-data were differentiated for each of the articles. For the purpose of the sampling process, the three interventions analyzed consist of flushing, water heater set point change, and both flushing and water heater set point change. The locations of the sampling consisted of the city drinking water inlet, the basement janitor's closet, basement shower, 2nd floor, 3rd floor, and 7th floor break rooms and restrooms of the Interdisciplinary Science and Technology Building IV at ASU. For the flushing intervention, the sampling results demonstrated an increase in free and total chlorine concentration post flushing which aligns with the research found in the literature review. In addition, it was observed that iron concentrations drastically increased for both the cold and hot water by flushing. There was a significant decrease detected for ATP concentrations post flush in the hot line. However through the sampling session, the flushing intervention did not yield statistically significant results for Legionella concentrations.

ContributorsCall, Kathryn (Author) / Cahill, Molly (Co-author) / Johnson, Elizabeth (Co-author) / Kotta, Vishnu (Co-author) / Hamilton, Kerry (Thesis director) / Boyer, Treavor (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2023-05
Description

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background

This research aims to develop an understanding of how interventions designed to improve water quality in buildings can be used to mitigate Legionella pneumophila concentrations. Intervention methods can be described as any approach that can be used to improve microbial water quality. In order to provide a foundation of background knowledge, a literature review was conducted to identify similar studies and collect relevant and timely research similar to the subject. The information gathered from the literature review was used to structure the sampling process and parameters. Using the research collected from the literature review, a review table was created to summarize the differences in the studies conducted and to determine research gaps. To categorize the studies, intervention methods, contaminants addressed, and water quality meta-data were differentiated for each of the articles. For the purpose of the sampling process, the three interventions analyzed consist of flushing, water heater set point change, and both flushing and water heater set point change. The locations of the sampling consisted of the city drinking water inlet, the basement janitor's closet, basement shower, 2nd floor, 3rd floor, and 7th floor break rooms and restrooms of the Interdisciplinary Science and Technology Building IV at ASU. For the flushing intervention, the sampling results demonstrated an increase in free and total chlorine concentration post flushing which aligns with the research found in the literature review. In addition, it was observed that iron concentrations drastically increased for both the cold and hot water by flushing. There was a significant decrease detected for ATP concentrations post flush in the hot line. However through the sampling session, the flushing intervention did not yield statistically significant results for Legionella concentrations.

ContributorsKotta, Vishnu Vardhan Reddy (Author) / Cahill, Molly (Co-author) / Call, Kathryn (Thesis director) / Johnson, Elizabeth (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2023-05