Matching Items (2)

135876-Thumbnail Image.png

A Guide to Speech Recognition Algorithms

Description

Many tasks that humans do from day to day are taken for granted in term of appreciating their true complexity. Humans are the only species on the planet that have

Many tasks that humans do from day to day are taken for granted in term of appreciating their true complexity. Humans are the only species on the planet that have developed such an in-depth means of auditory communication. Recreating the mechanisms in the brain that recognize speech patterns is no easy task. This paper compares and contrasts various algorithms used in modern day ASR systems, and focuses primarily on ASR systems in resource constrained environments. The Green colored blocks in Figure 1 will be focused on in greater detail throughout this paper, they are the key to building an exceptional ASR system. Deep Neural Networks (DNNs) are the clear and current leader among ASR technologies; all research in this field is currently revolving around this method. Although DNNs are very effective, many older methods of ASR are used often due to the complexities involved with DNNs; these difficulties include the large amount of hardware resources as well as development resources, such as engineers and money, required for this method.

Contributors

Agent

Created

Date Created
  • 2015-12

147660-Thumbnail Image.png

A Bayesian Approach to Single-Photon Single-Molecule FRET data

Description

Single molecule FRET experiments are important for studying processes that happen on the molecular scale. By using pulsed illumination and collecting single photons, it is possible to use information gained

Single molecule FRET experiments are important for studying processes that happen on the molecular scale. By using pulsed illumination and collecting single photons, it is possible to use information gained from the fluorescence lifetime of the chromophores in the FRET pair to gain more accurate estimates of the underlying FRET rate which is used to determine information about the distance between the chromophores of the FRET pair. In this paper, we outline a method that utilizes Bayesian inference to learn parameter values for a model informed by the physics of a immobilized single-molecule FRET experiment. This method is unique in that it combines a rigorous look at the photophysics of the FRET pair and a nonparametric treatment of the molecular conformational statespace, allowing the method to learn not just relevant photophysical rates (such as relaxation rates and FRET rates), but also the number of molecular conformational states.

Contributors

Agent

Created

Date Created
  • 2021-05