Matching Items (2)
Filtering by

Clear all filters

148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166204-Thumbnail Image.png
Description

In thesis we will build up our operator theory for finite and infinite dimensional systems. We then prove that Heisenberg and Schrodinger representations are equivalent for systems with finite degrees of freedom. We will then make a case to switch to a C*-algebra formulation of quantum mechanics as we will

In thesis we will build up our operator theory for finite and infinite dimensional systems. We then prove that Heisenberg and Schrodinger representations are equivalent for systems with finite degrees of freedom. We will then make a case to switch to a C*-algebra formulation of quantum mechanics as we will prove that the Schrodinger and Heisenberg pictures become inadequate to full describe systems with infinitely many degrees of freedom because of inequivalent representations. This becomes important as we shift from single particle systems to quantum field theory, statistical mechanics, and many other areas of study. The goal of this thesis is to introduce these mathematical topics rigorously and prove that they are necessary for further study in particle physics.

ContributorsPerleberg, Sarah (Author) / Quigg, John (Thesis director) / Lebed, Richard (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05