Matching Items (16)
Filtering by

Clear all filters

135845-Thumbnail Image.png
Description
This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography

This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography were utilized for post-impact analysis. MATLAB algorithms were written and refined for the localization and quantification of damage in plates using data from sensors such as piezoelectric and fiber Bragg gratings sensors. Throughout the thesis, the general plate theory and laminate plate theory, the operations and optimization of the gas gun, and the theory used for the damage localization algorithms will be discussed. Additional quantifiable results are to come in future semesters of experimentation, but this thesis outlines the framework upon which all the research will continue to advance.
ContributorsMccrea, John Patrick (Author) / Chattopadhyay, Aditi (Thesis director) / Borkowski, Luke (Committee member) / Department of Military Science (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136138-Thumbnail Image.png
Description
This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography

This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography were utilized for post-impact analysis. MATLAB algorithms were written and refined for the localization and quantification of damage in plates using data from sensors such as piezoelectric and fiber Bragg gratings sensors. Throughout the thesis, the general plate theory and laminate plate theory, the operations and optimization of the gas gun, and the theory used for the damage localization algorithms will be discussed. Additional quantifiable results are to come in future semesters of experimentation, but this thesis outlines the framework upon which all the research will continue to advance.
ContributorsMccrea, John Patrick (Author) / Chattopadhyay, Aditi (Thesis director) / Borkowski, Luke (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Military Science (Contributor)
Created2015-05
Description

The goal of themed entertainment is to use activities and environments to tell a story and immerse the guest in a novel experience. By applying these concepts to nonfiction and educational topics, the concept of edutainment is created. In recent years museums have begun utilizing the concept of edutainment and

The goal of themed entertainment is to use activities and environments to tell a story and immerse the guest in a novel experience. By applying these concepts to nonfiction and educational topics, the concept of edutainment is created. In recent years museums have begun utilizing the concept of edutainment and techniques typically found in themed entertainment experiences to capture the attention and focus of guests and create experiences that connect emotionally with them. My goal in this thesis pathway project was to investigate this trend and technique of connecting with an audience and apply it to the STEAMtank project within ASU’s Innovation Space. The goal of STEAMtank is to design and fabricate children’s STEAM museum exhibits in two semesters with focus on accessible design. My team conducted research and interviews exploring current market trends in theme parks and museums, best practice designs and operations, and interests of children to develop the concept for our exhibit, Gust of Dust, which was then fine-tuned, constructed, and installed in the STEAMtank Exhibit Space. Gust of Dust is an exciting exhibit demonstrating the power of a haboob that was developed from preconcept to installation in under a year by two determined and talented interdisciplinary teams. Learning about haboobs connect concepts of environmentalism, earth science, and safety to real concepts in children’s lives.

ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164321-Thumbnail Image.png
ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164322-Thumbnail Image.png
ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164323-Thumbnail Image.png
ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164324-Thumbnail Image.png
ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164325-Thumbnail Image.png
ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164326-Thumbnail Image.png
ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
164327-Thumbnail Image.png
ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05