Matching Items (2)
Filtering by

Clear all filters

135808-Thumbnail Image.png
Description
The premise of the embodied cognition hypothesis is that cognitive processes require emotion, sensory, and motor systems in the brain, rather than using arbitrary symbols divorced from sensorimotor systems. The hypothesis explains many of the mechanisms of mental simulation or imagination and how they facilitate comprehension of concepts. Some forms

The premise of the embodied cognition hypothesis is that cognitive processes require emotion, sensory, and motor systems in the brain, rather than using arbitrary symbols divorced from sensorimotor systems. The hypothesis explains many of the mechanisms of mental simulation or imagination and how they facilitate comprehension of concepts. Some forms of embodied processing can be measured using electroencephalography (EEG), in a particular waveform known as the mu rhythm (8-13 Hz) in the sensorimotor cortex of the brain. Power in the mu band is suppressed (or de-synchronized) when an individual performs an action, as well as when the individual imagines performing the action, thus mu suppression measures embodied imagination. An important question however is whether the sensorimotor cortex involvement while reading, as measured by mu suppression, is part of the comprehension of what is read or if it is arises after comprehension has taken place. To answer this question, participants first took the Gates-MacGinitie reading comprehension test. Then, mu-suppression was measured while participants read experimental materials. The degree of mu-suppression while reading verbs correlated .45 with their score on the Gates-MacGinitie test. This correlation strongly suggests that the sensorimotor system involvement while reading action sentences is part of the comprehension process rather than being an aftereffect.
ContributorsMarino, Annette Webb (Author) / Glenberg, Arthur (Thesis director) / Presson, Clark (Committee member) / Blais, Chris (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05