Matching Items (1,386)
Filtering by

Clear all filters

155344-Thumbnail Image.png
Description
Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is

Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is a weather-related phenomenon caused by the horizontal refraction of sunlight in the upper atmosphere. This refraction creates the illusion of three suns above the horizon, and is often accompanied by a bright halo called the circumzenithal arc. The halo is caused by light bending at 22° as it passes through hexagonal ice crystals. Consequently, the numbers six and 22 are important figures, and have been encoded into this piece in various ways.

The first section, marked “With concentrated intensity,” is characterized by the juxtaposition of tonal ambiguity and tonal affirmation, as well as the use of polymetric counterpoint (often 7/8 against 4/4 or 7/8 against 3/4). The middle section, marked “Crystalline,” provides contrast in its use of unmetered sections and independent tempos. The refraction of light is represented in this movement by a 22-note row based on a hexachord (B-flat, F, C, G, A, E) introduced in measure 164 of the first section. The third section, marked “With frenetic energy,” begins without pause on an arresting entrance of the drums playing an additive rhythmic pattern. This pattern (5+7+9+1) amounts to 22 eighth-note pulses and informs much of the motivic and structural considerations for the remainder of the piece.
ContributorsMitton, Stephen LeRoy (Author) / DeMars, James (Thesis advisor) / Norton, Kay (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2017
ContributorsHsu, Gabrielle (Performer) / Kierum, Caitlin (Performer) / Song, Yiqian (Performer) / Fox, Matt (Performer) / Lougheed, Julia (Performer) / Jones, Evelyn (Performer) / Miller, Isaac (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-14
ContributorsMoonitz, Olivia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-13
ContributorsAnderle, Jeff (Performer) / Wegehaupt, David (Performer) / Bennett, Joshua (Performer) / Clements, Katrina (Performer) / Dominguez, Vincent (Performer) / Druesedow, Libby (Performer) / Englert, Patrick (Performer) / Liang, Jack (Performer) / Moonitz, Olivia (Performer) / Ruth, Jeremy (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-09
ContributorsNeidermayer, Tyler (Performer) / Karam, Andrea Luque (Performer) / White, Jonathan (Performer) / Manka, Andrew (Performer) / Chaston, Aubrey (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
135808-Thumbnail Image.png
Description
The premise of the embodied cognition hypothesis is that cognitive processes require emotion, sensory, and motor systems in the brain, rather than using arbitrary symbols divorced from sensorimotor systems. The hypothesis explains many of the mechanisms of mental simulation or imagination and how they facilitate comprehension of concepts. Some forms

The premise of the embodied cognition hypothesis is that cognitive processes require emotion, sensory, and motor systems in the brain, rather than using arbitrary symbols divorced from sensorimotor systems. The hypothesis explains many of the mechanisms of mental simulation or imagination and how they facilitate comprehension of concepts. Some forms of embodied processing can be measured using electroencephalography (EEG), in a particular waveform known as the mu rhythm (8-13 Hz) in the sensorimotor cortex of the brain. Power in the mu band is suppressed (or de-synchronized) when an individual performs an action, as well as when the individual imagines performing the action, thus mu suppression measures embodied imagination. An important question however is whether the sensorimotor cortex involvement while reading, as measured by mu suppression, is part of the comprehension of what is read or if it is arises after comprehension has taken place. To answer this question, participants first took the Gates-MacGinitie reading comprehension test. Then, mu-suppression was measured while participants read experimental materials. The degree of mu-suppression while reading verbs correlated .45 with their score on the Gates-MacGinitie test. This correlation strongly suggests that the sensorimotor system involvement while reading action sentences is part of the comprehension process rather than being an aftereffect.
ContributorsMarino, Annette Webb (Author) / Glenberg, Arthur (Thesis director) / Presson, Clark (Committee member) / Blais, Chris (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
ContributorsASU Library. Music Library (Publisher)
Created2018-09-17
ContributorsSpring, Robert (Performer) / Gardner, Joshua (Performer) / Buck, Elizabeth (Performer) / Schuring, Martin (Performer) / Micklich, Albie (Performer) / Ericson, John Q. (John Quincy), 1962- (Performer) / Smith, J. B., 1957- (Performer) / Ryan, Russell (Contributor) / ASU Library. Music Library (Publisher)
Created2018-09-16
ContributorsZhu, Shuang (Performer) / Spring, Robert (Performer) / Zhang, Aihua (Performer) / Skinner, Wesley (Performer) / Jiang, Zhou (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-09
ContributorsSadownik, Stephanie (Performer) / Di Russo, Michelle (Conductor) / ASU Library. Music Library (Publisher)
Created2018-04-08