Matching Items (6)
Filtering by

Clear all filters

153905-Thumbnail Image.png
Description
Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb,

Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb, for unknown reasons. Potentially, US could also stimulate peripheral or enteric neurons for control of blood glucose.

To better understand the inconsistent effects across rat motor cortex, US modulation of electrically-evoked movements was tested. A stimulation array was implanted on the cortical surface and US (200 kHz, 30-60 W/cm2 peak) was applied while measuring changes in the evoked forelimb and hindlimb movements. Direct US stimulation of the hindlimb was also studied. To test peripheral effects, rat blood glucose levels were measured while applying US near the liver.

No short-term motor modulation was visible (95% confidence interval: -3.5% to +5.1% forelimb, -3.8% to +5.5% hindlimb). There was significant long-term (minutes-order) suppression (95% confidence interval: -3.7% to -10.8% forelimb, -3.8% to -11.9% hindlimb). This suppression may be due to the considerable heating (+1.8°C between US
on-US conditions); effects of heat and US were not separable in this experiment. US directly evoked hindlimb and scrotum movements in some sessions. This required a long interval, at least 3 seconds between US bursts. Movement could be evoked with much shorter pulses than used in literature (3 ms). The EMG latency (10 ms) was compatible with activation of corticospinal neurons. The glucose modulation test showed a strong increase in a few trials, but across all trials found no significant effect.

The single motor response and the long refractory period together suggest that only the beginning of the US burst had a stimulatory effect. This would explain the lack of short-term modulation, and suggests future work with shorter pulses could better explore the missing forelimb response. During the refractory period there was no change in the electrically-evoked response, which suggests the US stimulation mechanism is independent of normal brain activity. These results challenge the literature-standard protocols and provide new insights on the unknown mechanism.
ContributorsGulick, Daniel Withers (Author) / Kleim, Jeffrey (Thesis advisor) / Towe, Bruce (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Herman, Richard (Committee member) / Helms Tillery, Steven (Committee member) / Arizona State University (Publisher)
Created2015
156177-Thumbnail Image.png
Description
The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second language speech perception. The purpose of this study was to investigate the role of M1 associated with speech motor centers in processing acoustic inputs in the native (L1) and second language (L2), using repetitive Transcranial Magnetic Stimulation (rTMS) to selectively alter neural activity in M1. Thirty-six healthy English/Spanish bilingual subjects participated in the experiment. The performance on a listening word-to-picture matching task was measured before and after real- and sham-rTMS to the orbicularis oris (lip muscle) associated M1. Vowel Space Area (VSA) obtained from recordings of participants reading a passage in L2 before and after real-rTMS, was calculated to determine its utility as an rTMS aftereffect measure. There was high variability in the aftereffect of the rTMS protocol to the lip muscle among the participants. Approximately 50% of participants showed an inhibitory effect of rTMS, evidenced by smaller motor evoked potentials (MEPs) area, whereas the other 50% had a facilitatory effect, with larger MEPs. This suggests that rTMS has a complex influence on M1 excitability, and relying on grand-average results can obscure important individual differences in rTMS physiological and functional outcomes. Evidence of motor support to word recognition in the L2 was found. Participants showing an inhibitory aftereffect of rTMS on M1 produced slower and less accurate responses in the L2 task, whereas those showing a facilitatory aftereffect of rTMS on M1 produced more accurate responses in L2. In contrast, no effect of rTMS was found on the L1, where accuracy and speed were very similar after sham- and real-rTMS. The L2 VSA measure was indicative of the aftereffect of rTMS to M1 associated with speech production, supporting its utility as an rTMS aftereffect measure. This result revealed an interesting and novel relation between cerebral motor cortex activation and speech measures.
ContributorsBarragan, Beatriz (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Rogalsky, Corianne (Committee member) / Restrepo, Adelaida (Committee member) / Arizona State University (Publisher)
Created2018
136952-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136933-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
154515-Thumbnail Image.png
Description
Navigation through natural environments requires continuous sensory guidance. In addition to coordinated muscle contractions of the limbs that are controlled by spinal cord, equilibrium, body weight bearing and transfer, and avoidance of obstacles all have to happen while locomotion is in progress and these are controlled by the supraspinal centers.

For

Navigation through natural environments requires continuous sensory guidance. In addition to coordinated muscle contractions of the limbs that are controlled by spinal cord, equilibrium, body weight bearing and transfer, and avoidance of obstacles all have to happen while locomotion is in progress and these are controlled by the supraspinal centers.

For successful locomotion, animals require visual and somatosensory information. Even though a number of supraspinal centers receive both in varying degrees, processing this information at different levels of the central nervous system, especially their contribution to visuo-motor and sensory-motor integration during locomotion is poorly understood.

This dissertation investigates the patterns of neuronal activity in three areas of the forebrain in the cat performing different locomotor tasks to elucidate involvement of these areas in processing of visual and somatosensory information related to locomotion. In three studies, animals performed two contrasting locomotor tasks in each and the neuronal activities were analyzed.

In the first study, cats walked in either complete darkness or in an illuminated room while the neuronal activity of the motor cortex was recorded. This study revealed that the neuronal discharge patterns in the motor cortex were significantly different between the two illumination conditions. The mean discharge rates, modulation, and other variables were significantly different in 49% of the neurons. This suggests a contextual correlation between the motor cortical activity and being able to see.

In two other studies, the activities of neurons of either the somatosensory cortex (SI) or ventrolateral thalamus (VL) were recorded while cats walked on a flat surface (simple locomotion) or along a horizontal ladder where continuous visual and somatosensory feedback was required (complex locomotion).

We found that the activity of all but one SI cells with receptive fields on the sole peaked before the foot touched the ground: predictably. Other cells showed various patterns of modulation, which differed between simple and complex locomotion. We discuss the predictive and reflective functionality of the SI in cyclical sensory-motor events such as locomotion.

We found that neuronal discharges in the VL were modulated to the stride cycle resembling patterns observed in the cortex that receives direct inputs from the VL. The modulation was stronger during walking on the ladder revealing VL’s contribution to locomotion-related activity of the cortex during precision stepping.
ContributorsNilaweera, Wijitha Udayalal (Author) / Beloozerova, Irina N (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Dounskaia, Natalia (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016
153654-Thumbnail Image.png
Description
Locomotion in natural environments requires coordinated movements from multiple body parts, and precise adaptations when changes in the environment occur. The contributions of the neurons of the motor cortex underlying these behaviors are poorly understood, and especially little is known about how such contributions may differ based on the

Locomotion in natural environments requires coordinated movements from multiple body parts, and precise adaptations when changes in the environment occur. The contributions of the neurons of the motor cortex underlying these behaviors are poorly understood, and especially little is known about how such contributions may differ based on the anatomical and physiological characteristics of neurons. To elucidate the contributions of motor cortical subpopulations to movements, the activity of motor cortical neurons, muscle activity, and kinematics were studied in the cat during a variety of locomotion tasks requiring accurate foot placement, including some tasks involving both expected and unexpected perturbations of the movement environment. The roles of neurons with two types of neuronal characteristics were studied: the existence of somatosensory receptive fields located at the shoulder, elbow, or wrist of the contralateral forelimb; and the existence projections through the pyramidal tract, including fast- and slow-conducting subtypes.

Distinct neuronal adaptations between simple and complex locomotion tasks were observed for neurons with different receptive field properties and fast- and slow-conducting pyramidal tract neurons. Feedforward and feedback-driven kinematic control strategies were observed for adaptations to expected and unexpected perturbations, respectively, during complex locomotion tasks. These kinematic differences were reflected in the response characteristics of motor cortical neurons receptive to somatosensory information from different parts of the forelimb, elucidating roles for the various neuronal populations in accommodating disturbances in the environment during behaviors. The results show that anatomical and physiological characteristics of motor cortical neurons are important for determining if and how neurons are involved in precise control of locomotion during natural behaviors.
ContributorsStout, Eric (Author) / Beloozerova, Irina N (Thesis advisor) / Dounskaia, Natalia (Thesis advisor) / Buneo, Christopher A (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2015