Matching Items (410)
Filtering by

Clear all filters

152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
151879-Thumbnail Image.png
Description
This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers.

This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers. To move beyond traditional narratives of cultural collapse, I employ a Complex Adaptive Systems approach to this research, and combine agent-based computer simulations of Neolithic land-use with dynamic and spatially-explicit GIS-based environmental models to conduct experiments into long-term trajectories of different potential Neolithic socio-environmental systems. My analysis outlines how the Early Neolithic "collapse" was likely instigated by a non-linear sequence of events, and that it would have been impossible for Neolithic peoples to recognize the long-term outcome of their actions. The experiment-based simulation approach shows that, starting from the same initial conditions, complex combinations of feedback amplification, stochasticity, responses to internal and external stimuli, and the accumulation of incremental changes to the socio-natural landscape, can lead to widely divergent outcomes over time. Thus, rather than being an inevitable consequence of specific Neolithic land-use choices, the "catastrophic" transformation at the end of the Early Neolithic was an emergent property of the Early Neolithic socio-natural system itself, and thus likely not an easily predictable event. In this way, my work uses the technique of simulation modeling to connect CAS theory with the archaeological and geoarchaeological record to help better understand the causes and consequences of socio-ecological transformation at a regional scale. The research is broadly applicable to other archaeological cases of resilience and collapse, and is truly interdisciplinary in that it draws on fields such as geomorphology, computer science, and agronomy in addition to archaeology.
ContributorsUllah, Isaac (Author) / Barton, C. Michael (Thesis advisor) / Banning, Edward B. (Committee member) / Clark, Geoffrey (Committee member) / Arrowsmith, J. Ramon (Committee member) / Arizona State University (Publisher)
Created2013
157023-Thumbnail Image.png
Description
Design is a fundamental human activity through which we attempt to navigate and manipulate the world around us for our survival, pleasure, and benefit. As human society has evolved, so too has the complexity and impact of our design activities on the environment. Now clearly intertwined as a complex social-ecological

Design is a fundamental human activity through which we attempt to navigate and manipulate the world around us for our survival, pleasure, and benefit. As human society has evolved, so too has the complexity and impact of our design activities on the environment. Now clearly intertwined as a complex social-ecological system at the global scale, we struggle in our ability to understand, design, implement, and manage solutions to complex global issues such as climate change, water scarcity, food security, and natural disasters. Some have asserted that this is because complex adaptive systems, like these, are moving targets that are only partially designed and partially emergent and self-organizing. Furthermore, these types of systems are difficult to understand and control due to the inherent dynamics of "wicked problems", such as: uncertainty, social dilemmas, inequities, and trade-offs involving multiple feedback loops that sometimes cause both the problems and their potential solutions to shift and evolve together. These problems do not, however, negate our collective need to effectively design, produce, and implement strategies that allow us to appropriate, distribute, manage and sustain the resources on which we depend. Design, however, is not well understood in the context of complex adaptive systems involving common-pool resources. In addition, the relationship between our attempts at control and performance at the system-level over time is not well understood either. This research contributes to our understanding of design in common-pool resource systems by using a multi-methods approach to investigate longitudinal data on an innovative participatory design intervention implemented in nineteen small-scale, farmer-managed irrigation systems in the Indrawati River Basin of Nepal over the last three decades. The intervention was intended as an experiment in using participatory planning, design and construction processes to increase food security and strengthen the self-sufficiency and self-governing capacity of resource user groups within the poorest district in Nepal. This work is the first time that theories of participatory design-processes have been empirically tested against longitudinal data on a number of small-scale, locally managed common-pool resource systems. It clarifies and helps to develop a theory of design in this setting for both scientific and practical purposes.
ContributorsRatajczyk, Elicia Beth (Author) / Anderies, John M (Thesis advisor) / York, Abigail (Committee member) / Shivakoti, Ganesh P (Committee member) / Arizona State University (Publisher)
Created2018
136524-Thumbnail Image.png
Description
Pressure from fiduciary duty leads agents within organizational systems to make decisions that result in positive feedback loops that often have inimical unintended consequences. The current corporate climate that often puts the bottom line ahead of environmental and social concerns in the name of fiduciary duty is doing so based

Pressure from fiduciary duty leads agents within organizational systems to make decisions that result in positive feedback loops that often have inimical unintended consequences. The current corporate climate that often puts the bottom line ahead of environmental and social concerns in the name of fiduciary duty is doing so based on a revised interpretation of the term that is clearly to the benefit of the corporations. It is important to note that this modern interpretation is a radical misinterpretation of the intent of the law as our forefathers defined it. However, in spite of the fact that the modern interpretation is leading to inimical unintended consequences, providing the systems agents with the proper training and tools necessary to recognize the cost benefit of implementing sustainable solutions may mitigate some of these positive feedback loops and their associated unintended consequences. By developing tools based on sustainable frameworks we may be able to return these organizations to the original intent of fiduciary duty, which was designed to encourage investment in organizations that worked for the public benefit. A concept that is remarkably similar to the triple bottom line framework that many sustainability professionals advocate on behalf of today.
ContributorsJohnson, Lyle Eric (Author) / Laubichler, Manfred (Thesis director) / Dooley, Kevin (Committee member) / O'Neill, Dan (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / School of Sustainability (Contributor)
Created2015-05
ContributorsEvans, Bartlett R. (Conductor) / Schildkret, David (Conductor) / Glenn, Erica (Conductor) / Concert Choir (Performer) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16
135788-Thumbnail Image.png
Description
The Department of Defense (DoD) acquisition system is a complex system riddled with cost and schedule overruns. These cost and schedule overruns are very serious issues as the acquisition system is responsible for aiding U.S. warfighters. Hence, if the acquisition process is failing that could be a potential threat to

The Department of Defense (DoD) acquisition system is a complex system riddled with cost and schedule overruns. These cost and schedule overruns are very serious issues as the acquisition system is responsible for aiding U.S. warfighters. Hence, if the acquisition process is failing that could be a potential threat to our nation's security. Furthermore, the DoD acquisition system is responsible for proper allocation of billions of taxpayer's dollars and employs many civilians and military personnel. Much research has been done in the past on the acquisition system with little impact or success. One reason for this lack of success in improving the system is the lack of accurate models to test theories. This research is a continuation of the effort on the Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation modeling research on DoD acquisition system. We propose to extend ERAM using agent-based simulation principles due to the many interactions among the subsystems of the acquisition system. We initially identify ten sub models needed to simulate the acquisition system. This research focuses on three sub models related to the budget of acquisition programs. In this thesis, we present the data collection, data analysis, initial implementation, and initial validation needed to facilitate these sub models and lay the groundwork for a full agent-based simulation of the DoD acquisition system.
ContributorsBucknell, Sophia Robin (Author) / Wu, Teresa (Thesis director) / Li, Jing (Committee member) / Colombi, John (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
ContributorsOwen, Ken (Conductor) / McDevitt, Mandy L. M. (Performer) / Larson, Brook (Conductor) / Wang, Lin-Yu (Performer) / Jacobs, Todd (Performer) / Morehouse, Daniel (Performer) / Magers, Kristen (Performer) / DeGrow, Gary (Performer) / DeGrow, Richard (Performer) / Women's Chorus (Performer) / Sun Devil Singers (Performer) / ASU Library. Music Library (Publisher)
Created2004-03-24
ContributorsMetz, John (Performer) / Sowers, Richard (Performer) / Collegium Musicum (Performer) / ASU Library. Music Library (Publisher)
Created1983-01-29
ContributorsEvans, Bartlett R. (Conductor) / Glenn, Erica (Conductor) / Steiner, Kieran (Conductor) / Thompson, Jason D. (Conductor) / Arizona Statesmen (Performer) / Women's Chorus (Performer) / Concert Choir (Performer) / Gospel Choir (Conductor) / ASU Library. Music Library (Publisher)
Created2019-03-15
ContributorsKillian, George W. (Performer) / Killian, Joni (Performer) / Vocal Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created1992-11-05