Matching Items (631)
Filtering by

Clear all filters

Description
Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from

Despite the wealth of folk music traditions in Portugal and the importance of the clarinet in the music of bandas filarmonicas, it is uncommon to find works featuring the clarinet using Portuguese folk music elements. In the interest of expanding this type of repertoire, three new works were commissioned from three different composers. The resulting works are Seres Imaginarios 3 by Luis Cardoso; Delirio Barroco by Tiago Derrica; and Memória by Pedro Faria Gomes. In an effort to submit these new works for inclusion into mainstream performance literature, the author has recorded these works on compact disc. This document includes interview transcripts with each composer, providing first-person discussion of each composition, as well as detailed biographical information on each composer. To provide context, the author has included a brief discussion on Portuguese folk music, and in particular, the role that the clarinet plays in Portuguese folk music culture.
ContributorsFerreira, Wesley (Contributor) / Spring, Robert S (Thesis advisor) / Bailey, Wayne (Committee member) / Gardner, Joshua (Committee member) / Hill, Gary (Committee member) / Schuring, Martin (Committee member) / Solis, Theodore (Committee member) / Arizona State University (Publisher)
Created2013
152722-Thumbnail Image.png
Description
The coordination of group behavior in the social insects is representative of a broader phenomenon in nature, emergent biological complexity. In such systems, it is believed that large-scale patterns result from the interaction of relatively simple subunits. This dissertation involved the study of one such system: the social foraging of

The coordination of group behavior in the social insects is representative of a broader phenomenon in nature, emergent biological complexity. In such systems, it is believed that large-scale patterns result from the interaction of relatively simple subunits. This dissertation involved the study of one such system: the social foraging of the ant Temnothorax rugatulus. Physically tiny with small population sizes, these cavity-dwelling ants provide a good model system to explore the mechanisms and ultimate origins of collective behavior in insect societies. My studies showed that colonies robustly exploit sugar water. Given a choice between feeders unequal in quality, colonies allocate more foragers to the better feeder. If the feeders change in quality, colonies are able to reallocate their foragers to the new location of the better feeder. These qualities of flexibility and allocation could be explained by the nature of positive feedback (tandem run recruitment) that these ants use. By observing foraging colonies with paint-marked ants, I was able to determine the `rules' that individuals follow: foragers recruit more and give up less when they find a better food source. By altering the nutritional condition of colonies, I found that these rules are flexible - attuned to the colony state. In starved colonies, individual ants are more likely to explore and recruit to food sources than in well-fed colonies. Similar to honeybees, Temmnothorax foragers appear to modulate their exploitation and recruitment behavior in response to environmental and social cues. Finally, I explored the influence of ecology (resource distribution) on the foraging success of colonies. Larger colonies showed increased consistency and a greater rate of harvest than smaller colonies, but this advantage was mediated by the distribution of resources. While patchy or rare food sources exaggerated the relative success of large colonies, regularly (or easily found) distributions leveled the playing field for smaller colonies. Social foraging in ant societies can best be understood when we view the colony as a single organism and the phenotype - group size, communication, and individual behavior - as integrated components of a homeostatic unit.
ContributorsShaffer, Zachary (Author) / Pratt, Stephen C (Thesis advisor) / Hölldobler, Bert (Committee member) / Janssen, Marco (Committee member) / Fewell, Jennifer (Committee member) / Liebig, Juergen (Committee member) / Arizona State University (Publisher)
Created2014
152772-Thumbnail Image.png
Description
A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876, and Piscatopus Sleeper, 1960 (Entiminae: Tanymecini) is presented. These genera are distributed throughout western North America, from Canada to Mexico and Baja California, primarily in arid and desert habitats, and feed on shrubs such as creosote (Larrea tridentata (DC.)

A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876, and Piscatopus Sleeper, 1960 (Entiminae: Tanymecini) is presented. These genera are distributed throughout western North America, from Canada to Mexico and Baja California, primarily in arid and desert habitats, and feed on shrubs such as creosote (Larrea tridentata (DC.) Coville: Zygophyllaceae) and several Asteraceae. Piscatopus was considered monotypic, comprised solely of P. griseus Sleeper, 1960, whereas Minyomerus formerly was comprised of seven species: M. innocuus Horn, 1876 (designated as the type species for Minyomerus in Pierce, 1913), M. caseyi (Sharp, 1891), M. conicollis Green, 1920, M. constrictus (Casey, 1888), M. languidus Horn, 1876, M. laticeps (Casey, 1888), M. microps (Say, 1831). This revision includes comprehensive redescriptions of the previously described species in these genera and descriptions of ten new species: M. imberbus sp. nov., M. caponei sp. nov., M. reburrus sp. nov., M. cracens sp. nov., M. trisetosus sp. nov., M. puticulatus sp. nov., M. bulbifrons sp. nov., M. politus sp. nov., M. gravivultus sp. nov., and M. rutellirostris sp. nov. A cladistic analysis using 46 morphological characters of 22 terminal taxa (5 outgroup, 17 ingroup) was carried out in WinClada and yielded a single most-parsimonious cladogram (length = 82, consistency index = 65, retention index = 82). The monophyly of Minyomerus is supported by the preferred cladogram. The results of the cladistic analysis place Piscatopus griseus within the genus Minyomerus as sister to M. rutellirostris. Therefore, Piscatopus is demoted to a junior synonym of Minyomerus and its sole member P. griseus, is moved to Minyomerus as M. griseus (Sleeper), new combination. Additionally, the species M. innocuus Horn, 1876 is demoted to a junior synonym of M. microps (Say, 1831), based on the principle of priority, and M. microps is elevated to the rank of type for the genus. The species M. languidus, M. microps, and M. trisetosus are putatively considered parthenogenetic, and lack male specimens over a broad range of sampling events. The diversity in exterior and genitalic morphology, range of host plants, overlapping species distributions, and geographic extent suggests an origin during the Miocene (~15 mya).
ContributorsJansen, Michael Andrew (Author) / Franz, Nico M (Thesis advisor) / Wojciechowski, Martin (Committee member) / Rosenberg, Michael (Committee member) / Arizona State University (Publisher)
Created2014
ContributorsBurton, Charlotte (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-08
150622-Thumbnail Image.png
Description
A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social behaviors are built, it also becomes possible to better evaluate hypothetical explanations regarding the mechanisms behind the evolution of insect eusociality, such as the argument that the reproductive regulatory infrastructure of solitary ancestors was co-opted and modified to produce distinct castes. This dissertation provides new information regarding the internal factors that could underlie the division of labor observed in both founding queens and workers of Pogonomyrmex californicus ants, and shows that changes in task performance are correlated with differences in reproductive physiology in both castes. In queens and workers, foraging behavior is linked to elevated levels of the reproductively-associated juvenile hormone (JH), and, in workers, this behavioral change is accompanied by depressed levels of ecdysteroid hormones. In both castes, the transition to foraging is also associated with reduced ovarian activity. Further investigation shows that queens remain behaviorally plastic, even after worker emergence, but the association between JH and behavioral bias remains the same, suggesting that this hormone is an important component of behavioral development in these ants. In addition to these reproductive factors, treatment with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) also causes queens to become biased towards foraging, suggesting an additional sensory component that could play an important role in division of labor. Overall, this work provides novel identification of the possible regulators behind ant division of labor, and suggests how reproductive physiology could play an important role in the evolution and regulation of non-reproductive social behaviors.
ContributorsDolezal, Adam G (Author) / Amdam, Gro V (Thesis advisor) / Brent, Colin S. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Liebig, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsDruesedow, Elizabeth (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-07
157410-Thumbnail Image.png
Description
Weevils are among the most diverse and evolutionarily successful animal lineages on Earth. Their success is driven in part by a structure called the rostrum, which gives weevil heads a characteristic "snout-like" appearance. Nut weevils in the genus Curculio use the rostrum to drill holes into developing fruits and nuts,

Weevils are among the most diverse and evolutionarily successful animal lineages on Earth. Their success is driven in part by a structure called the rostrum, which gives weevil heads a characteristic "snout-like" appearance. Nut weevils in the genus Curculio use the rostrum to drill holes into developing fruits and nuts, wherein they deposit their eggs. During oviposition this exceedingly slender structure is bent into a straightened configuration - in some species up to 90° - but does not suffer any damage during this process. The performance of the snout is explained in terms of cuticle biomechanics and rostral curvature, as presented in a series of four interconnected studies. First, a micromechanical constitutive model of the cuticle is defined to predict and reconstruct the mechanical behavior of each region in the exoskeleton. Second, the effect of increased endocuticle thickness on the stiffness and fracture strength of the rostrum is assessed using force-controlled tensile testing. In the third chapter, these studies are integrated into finite element models of the snout, demonstrating that the Curculio rostrum is only able to withstand repeated, extreme bending because of

modifications to the composite structure of the cuticle in the rostral apex. Finally, interspecific differences in the differential geometry of the snout are characterized to elucidate the role of biomechanical constraint in the evolution of rostral morphology for both males and females. Together these studies highlight the significance of cuticle biomechanics - heretofore unconsidered by others - as a source of constraint on the evolution of the rostrum and the mechanobiology of the genus Curculio.
ContributorsJansen, Michael Andrew (Author) / Franz, Nico M (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Harrison, Jon (Committee member) / Martins, Emilia (Committee member) / Arizona State University (Publisher)
Created2009
156871-Thumbnail Image.png
Description
Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of

Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of arid-adapted flightless beetles found throughout western North America. Four interconnected studies that jointly increase our knowledge of this group are presented. First, the darkling beetle fauna of the Algodones sand dunes in southern California is examined as a case study to explore the scientific practice of checklist creation. An updated list of the species known from this region is presented, with a critical focus on material now made available through digitization and global aggregation. This part concludes with recommendations for future biodiversity checklist authors. Second, the psammophilic genus Trogloderus LeConte, 1879 is revised. Six new species are described, and the first, multi-gene phylogeny for the genus is inferred. In addition, historical biogeographic reconstructions along with novel hypotheses of speciation patterns within the Intermountain Region are given. In particular, the Kaibab Plateau and Kaiparowitz Formation are found to have promoted speciation on the Colorado Plateau. The Owens Valley and prehistoric Bouse Embayment are similarly hypothesized to drive species diversification in southern California. Third, a novel phylogenomic analysis for the tribe Amphidorini is presented, based on 29 de novo partial transcriptomes. Three putative ortholog sets were discovered and analyzed to infer the relationships between species groups and genera. The existing classification of the tribe is found to be highly inadequate, though the earliest-diverging relationships within the tribe are still in question. Finally, the new phylogenetic framework is used to provide a genus-level revision for the Amphidorini, which previously contained six valid genera and 253 valid species. This updated classification includes more than 100 taxonomic changes and results in the revised tribe consisting of 16 genera, with three being described as new to science.
ContributorsJohnston, Murray Andrew (Author) / Franz, Nico M (Thesis advisor) / Cartwright, Reed (Committee member) / Taylor, Jesse (Committee member) / Pigg, Kathleen (Committee member) / Arizona State University (Publisher)
Created2018
156764-Thumbnail Image.png
Description
Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine

Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine glands, the proper development and function of these glands are vital to colony dynamics. In this thesis, I present a study of the developmental ontogeny of the exocrine glands found in the head of the honey bee. In Chapter 2, I elucidate how the larval salivary gland transitions to an adult salivary gland through apoptosis and cell growth, differentiation and migration. I also explain the development of the hypopharyngeal and the mandibular gland using apoptotic markers and cytoskeletal markers like tubulin and actin. I explain the fundamental developmental plan for the formation of the glands and show that apoptosis plays an important role in the transformation toward an adult gland.
ContributorsNath, Rachna (Author) / Gadau, Juergen (Thesis advisor) / Rawls, Alan (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2018