Matching Items (13)

135758-Thumbnail Image.png

An Image Analysis Environment for Species Identification of Food Contaminating Beetles

Description

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species of insects, especially storage beetles, is a reliable indicator of possible contamination during storage and food processing. However, the current approach to identifying species is visual examination by human analysts; this method is rather subjective and time-consuming. Furthermore, confident identification requires extensive experience and training. To aid this inspection process, we have developed in collaboration with FDA analysts some image analysis-based machine intelligence to achieve species identification with up to 90% accuracy. The current project is a continuation of this development effort. Here we present an image analysis environment that allows practical deployment of the machine intelligence on computers with limited processing power and memory. Using this environment, users can prepare input sets by selecting images for analysis, and inspect these images through the integrated pan, zoom, and color analysis capabilities. After species analysis, the results panel allows the user to compare the analyzed images with referenced images of the proposed species. Further additions to this environment should include a log of previously analyzed images, and eventually extend to interaction with a central cloud repository of images through a web-based interface. Additional issues to address include standardization of image layout, extension of the feature-extraction algorithm, and utilizing image classification to build a central search engine for widespread usage.

Contributors

Agent

Created

Date Created
  • 2016-05

137123-Thumbnail Image.png

Characterization of a Lipid Coating on the Surface of Silk Produced by the Embiid Antipaluria urichi

Description

Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters

Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid coating on silk produced by the embiid Antipaluria urichi is shown using scanning and transmission electron microscopy, FT-IR, and water drop contact angle analysis. Subsequently, the composition of the lipid layer is then characterized by 1H NMR and GC-MS.

Contributors

Agent

Created

Date Created
  • 2014-05

158019-Thumbnail Image.png

Mechanistic Diversity in Long-Range Regulation of Worker Reproduction in Polydomous Ant Species

Description

Ant colonies provide numerous opportunities to study communication systems that maintain the cohesion of eusocial groups. In many ant species, workers have retained their ovaries and the ability to produce

Ant colonies provide numerous opportunities to study communication systems that maintain the cohesion of eusocial groups. In many ant species, workers have retained their ovaries and the ability to produce male offspring; however, they generally refrain from producing their own sons when a fertile queen is present in the colony. Although mechanisms that facilitate the communication of the presence of a fertile queen to all members of the colony have been highly studied, those studies have often overlooked the added challenge faced by polydomous species, which divide their nests across as many as one hundred satellite nests resulting in workers potentially having infrequent contact with the queen. In these polydomous contexts, regulatory phenotypes must extend beyond the immediate spatial influence of the queen.

This work investigates mechanisms that can extend the spatial reach of fertility signaling and reproductive regulation in three polydomous ant species. In Novomessor cockerelli, the presence of larvae but not eggs is shown to inhibit worker reproduction. Then, in Camponotus floridanus, 3-methylheptacosane found on the queen cuticle and queen-laid eggs is verified as a releaser pheromone sufficient to disrupt normally occurring aggressive behavior toward foreign workers. Finally, the volatile and cuticular hydrocarbon pheromones present on the cuticle of Oecophylla smaragdina queens are shown to release strong attraction response by workers; when coupled with previous work, this result suggests that these chemicals may underly both the formation of a worker retinue around the queen as well as egg-located mechanisms of reproductive regulation in distant satellite nests. Whereas most previous studies have focused on the short-range role of hydrocarbons on the cuticle of the queen, these studies demonstrate that eusocial insects may employ longer range regulatory mechanisms. Both queen volatiles and distributed brood can extend the range of queen fertility signaling, and the use of larvae for fertility signaling suggest that feeding itself may be a non-chemical mechanism for reproductive regulation. Although trail laying in mass-recruiting ants is often used as an example of complex communication, reproductive regulation in ants may be a similarly complex example of insect communication, especially in the case of large, polydomous ant colonies.

Contributors

Agent

Created

Date Created
  • 2020

157762-Thumbnail Image.png

Systematics, morphology, and evolution of the new world Conoderinae Schoenherr, 1833 (Coleoptera: Curculionidae)

Description

Weevils are one of the most diverse groups of animals with thousands of species suspected to remain undiscovered. The Conoderinae Schoenherr, 1833 are no exception, being especially diverse and unknown

Weevils are one of the most diverse groups of animals with thousands of species suspected to remain undiscovered. The Conoderinae Schoenherr, 1833 are no exception, being especially diverse and unknown in the Neotropics where they are recognizable for their unique behaviors and color patterns among weevils. Despite these peculiarities, the group has received little attention from researchers in the past century, with almost nothing known about their evolution. This dissertation presents a series of three studies that begin to elucidate the evolutionary history of these bizarre and fascinating weevils, commencing with an overview of their biology and classificatory history (Chapter 1).

Chapter 2 presents the first formal cladistic analysis on the group to redefine the New World tribes Lechriopini Lacordaire, 1865 and Zygopini, Lacordaire, 1865. An analysis of 75 taxa (65 ingroup) with 75 morphological characters yielded six equally parsimonious trees and synapomorphies that are used to reconstitute the tribes, resulting in the transfer of sixteen genera from the Zygopini to the Lechriopini and four generic transfers out of the Lechriopini to elsewhere in the Conoderinae.

Chapter 3 constitutes a taxonomic revision of the genus Trichodocerus Chevrolat, 1879, the sole genus in the tribe Trichodocerini Champion, 1906, which has had an uncertain phylogenetic placement in the Curculionidae but has most recently been treated in the Conoderinae. In addition to redescriptions of the three previously described species placed in the genus, twenty-four species are newly described and an identification key is provided for all recognized species groups and species.

Chapter 4 quantitatively tests the similarity in color pattern among species hypothesized to belong to several different mimicry complexes. The patterns of 160 species of conoderine weevils were evaluated for 15 categorical and continuous characters. Non-metric multidimensional scaling (NMDS) is used to visualize similarity by the proximity of individual species and clusters of species assigned to a mimicry complex in ordination space with clusters being statistically tested using permutational multivariate analysis of variance (PERMANOVA).

Contributors

Agent

Created

Date Created
  • 2019

157846-Thumbnail Image.png

Immunological and gene regulatory functions of the protein vitellogenin in honey bees (Apis mellifera)

Description

Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is primarily known for its role in egg-yolk formation but also serves functions pertaining to immunity, longevity, nutrient storage,

Vitellogenin (Vg) is an ancient and highly conserved multifunctional protein. It is primarily known for its role in egg-yolk formation but also serves functions pertaining to immunity, longevity, nutrient storage, and oxidative stress relief. In the honey bee (Apis mellifera), Vg has evolved still further to include important social functions that are critical to the maintenance and proliferation of colonies. Here, Vg is used to synthesize royal jelly, a glandular secretion produced by a subset of the worker caste that is fed to the queen and young larvae and which is essential for caste development and social immunity. Moreover, Vg in the worker caste sets the pace of their behavioral development as they transition between different tasks throughout their life. In this dissertation, I make several new discoveries about Vg functionality. First, I uncover a colony-level immune pathway in bees that uses royal jelly as a vehicle to transfer pathogen fragments between nestmates. Second, I show that Vg is localized and expressed in the honey bee digestive tract and suggest possible immunological functions it may be performing there. Finally, I show that Vg enters to nucleus and binds to deoxyribonucleic acid (DNA), acting as a potential transcription factor to regulate expression of many genes pertaining to behavior, metabolism, and signal transduction pathways. These findings represent a significant advance in the understanding of Vg functionality and honey bee biology, and set the stage for many future avenues of research.

Contributors

Agent

Created

Date Created
  • 2019

157811-Thumbnail Image.png

A recruit's dilemma: collective decision-making and information content in the ant Temnothorax rugatulus

Description

An insect society needs to share information about important resources in order to collectively exploit them. This task poses a dilemma if the colony must consider multiple resource types, such

An insect society needs to share information about important resources in order to collectively exploit them. This task poses a dilemma if the colony must consider multiple resource types, such as food and nest sites. How does it allocate workers appropriately to each resource, and how does it adapt its recruitment communication to the specific needs of each resource type? In this dissertation, I investigate these questions in the ant Temnothorax rugatulus.

In Chapter 1, I summarize relevant past work on food and nest recruitment. Then I describe T. rugatulus and its recruitment behavior, tandem running, and I explain its suitability for these questions. In Chapter 2, I investigate whether food and nest recruiters behave differently. I report two novel behaviors used by recruiters during their interaction with nestmates. Food recruiters perform these behaviors more often than nest recruiters, suggesting that they convey information about target type. In Chapter 3, I investigate whether colonies respond to a tradeoff between foraging and emigration by allocating their workforce adaptively. I describe how colonies responded when I posed a tradeoff by manipulating colony need for food and shelter and presenting both resources simultaneously. Recruitment and visitation to each target partially matched the predictions of the tradeoff hypothesis. In Chapter 4, I address the tuned error hypothesis, which states that the error rate in recruitment is adaptively tuned to the patch area of the target. Food tandem leaders lost followers at a higher rate than nest tandem leaders. This supports the tuned error hypothesis, because food targets generally have larger patch areas than nest targets with small entrances.

This work shows that animal groups face tradeoffs as individual animals do. It also suggests that colonies spatially allocate their workforce according to resource type. Investigating recruitment for multiple resource types gives a better understanding of exploitation of each resource type, how colonies make collective decisions under conflicting goals, as well as how colonies manage the exploitation of multiple types of resources differently. This has implications for managing the health of economically important social insects such as honeybees or invasive fire ants.

Contributors

Agent

Created

Date Created
  • 2019

150622-Thumbnail Image.png

The physiology of division of labor in the ant, Pogonomyrmex californicus

Description

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social behaviors are built, it also becomes possible to better evaluate hypothetical explanations regarding the mechanisms behind the evolution of insect eusociality, such as the argument that the reproductive regulatory infrastructure of solitary ancestors was co-opted and modified to produce distinct castes. This dissertation provides new information regarding the internal factors that could underlie the division of labor observed in both founding queens and workers of Pogonomyrmex californicus ants, and shows that changes in task performance are correlated with differences in reproductive physiology in both castes. In queens and workers, foraging behavior is linked to elevated levels of the reproductively-associated juvenile hormone (JH), and, in workers, this behavioral change is accompanied by depressed levels of ecdysteroid hormones. In both castes, the transition to foraging is also associated with reduced ovarian activity. Further investigation shows that queens remain behaviorally plastic, even after worker emergence, but the association between JH and behavioral bias remains the same, suggesting that this hormone is an important component of behavioral development in these ants. In addition to these reproductive factors, treatment with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) also causes queens to become biased towards foraging, suggesting an additional sensory component that could play an important role in division of labor. Overall, this work provides novel identification of the possible regulators behind ant division of labor, and suggests how reproductive physiology could play an important role in the evolution and regulation of non-reproductive social behaviors.

Contributors

Agent

Created

Date Created
  • 2012

150228-Thumbnail Image.png

The regulation of worker reproduction in the ant Aphaenogaster cockerelli

Description

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor,

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.

Contributors

Agent

Created

Date Created
  • 2011

157410-Thumbnail Image.png

Evolutionary Biomechanics of the Rostrum of Curculio Linnaeus, 1758 (Coleoptera: Curculionidae)

Description

Weevils are among the most diverse and evolutionarily successful animal lineages on Earth. Their success is driven in part by a structure called the rostrum, which gives weevil heads a

Weevils are among the most diverse and evolutionarily successful animal lineages on Earth. Their success is driven in part by a structure called the rostrum, which gives weevil heads a characteristic "snout-like" appearance. Nut weevils in the genus Curculio use the rostrum to drill holes into developing fruits and nuts, wherein they deposit their eggs. During oviposition this exceedingly slender structure is bent into a straightened configuration - in some species up to 90° - but does not suffer any damage during this process. The performance of the snout is explained in terms of cuticle biomechanics and rostral curvature, as presented in a series of four interconnected studies. First, a micromechanical constitutive model of the cuticle is defined to predict and reconstruct the mechanical behavior of each region in the exoskeleton. Second, the effect of increased endocuticle thickness on the stiffness and fracture strength of the rostrum is assessed using force-controlled tensile testing. In the third chapter, these studies are integrated into finite element models of the snout, demonstrating that the Curculio rostrum is only able to withstand repeated, extreme bending because of

modifications to the composite structure of the cuticle in the rostral apex. Finally, interspecific differences in the differential geometry of the snout are characterized to elucidate the role of biomechanical constraint in the evolution of rostral morphology for both males and females. Together these studies highlight the significance of cuticle biomechanics - heretofore unconsidered by others - as a source of constraint on the evolution of the rostrum and the mechanobiology of the genus Curculio.

Contributors

Agent

Created

Date Created
  • 2009

152772-Thumbnail Image.png

A phylogenetic revision of Minyomerus Horn, 1876 and Piscatopus Sleeper, 1960 (Curculionidae: Entiminae: Tanymecini: Tanymecina)

Description

A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876, and Piscatopus Sleeper, 1960 (Entiminae: Tanymecini) is presented. These genera are distributed throughout western North America, from Canada to

A phylogenetic revision of the broad-nosed weevil genera Minyomerus Horn, 1876, and Piscatopus Sleeper, 1960 (Entiminae: Tanymecini) is presented. These genera are distributed throughout western North America, from Canada to Mexico and Baja California, primarily in arid and desert habitats, and feed on shrubs such as creosote (Larrea tridentata (DC.) Coville: Zygophyllaceae) and several Asteraceae. Piscatopus was considered monotypic, comprised solely of P. griseus Sleeper, 1960, whereas Minyomerus formerly was comprised of seven species: M. innocuus Horn, 1876 (designated as the type species for Minyomerus in Pierce, 1913), M. caseyi (Sharp, 1891), M. conicollis Green, 1920, M. constrictus (Casey, 1888), M. languidus Horn, 1876, M. laticeps (Casey, 1888), M. microps (Say, 1831). This revision includes comprehensive redescriptions of the previously described species in these genera and descriptions of ten new species: M. imberbus sp. nov., M. caponei sp. nov., M. reburrus sp. nov., M. cracens sp. nov., M. trisetosus sp. nov., M. puticulatus sp. nov., M. bulbifrons sp. nov., M. politus sp. nov., M. gravivultus sp. nov., and M. rutellirostris sp. nov. A cladistic analysis using 46 morphological characters of 22 terminal taxa (5 outgroup, 17 ingroup) was carried out in WinClada and yielded a single most-parsimonious cladogram (length = 82, consistency index = 65, retention index = 82). The monophyly of Minyomerus is supported by the preferred cladogram. The results of the cladistic analysis place Piscatopus griseus within the genus Minyomerus as sister to M. rutellirostris. Therefore, Piscatopus is demoted to a junior synonym of Minyomerus and its sole member P. griseus, is moved to Minyomerus as M. griseus (Sleeper), new combination. Additionally, the species M. innocuus Horn, 1876 is demoted to a junior synonym of M. microps (Say, 1831), based on the principle of priority, and M. microps is elevated to the rank of type for the genus. The species M. languidus, M. microps, and M. trisetosus are putatively considered parthenogenetic, and lack male specimens over a broad range of sampling events. The diversity in exterior and genitalic morphology, range of host plants, overlapping species distributions, and geographic extent suggests an origin during the Miocene (~15 mya).

Contributors

Agent

Created

Date Created
  • 2014