Matching Items (5)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
135736-Thumbnail Image.png
Description
The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem

The Built-In Self-Test for Simultaneous Transmit and Receive (BIST for STAR) will be able to solve the challenges of transmitting and receiving at the same time at the same frequency. One of the major components is the STAR antenna which transmits and receives along the same pathway. The main problem with doing both on the same path is that the transmit signal is usually much stronger in power compared to the received signal. The transmit signal has echoes and leakages that cause self-interference, preventing the received signal from being properly obtained. The solution developed in this project is the BIST component, which will help calculate the functional gain and phase offset of the interference signal and subtract it from the pathway so that the received signal remains. The functions of the proposed circuit board can be modeled in Matlab, where an emulation code generates a random, realistic functional gain and delay for the interference. From the generated values, the BIST for STAR was simulated to output what the measurements would be given the strength of the input signal and a controlled delay. The original Matlab code models an ideal environment directly recalculating the functional gain and phase from the given measurements in a second Matlab script. The actual product will not be ideal; a possible source of error to be considered is the effect of thermal noise. To observe the effect of noise on the BIST for STAR's performance, the Matlab code was expanded upon to include a component for thermal noise, and a method of analyzing the results of the board.
ContributorsLiu, Jennifer Yuan (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135766-Thumbnail Image.png
Description
The capstone portion of this project was to use the established STaR antennas and add a Built in Self-Test system to ensure the quality of the signals being received. This part of the project required a MatLab simulation to be built, a layout created, and a PCB designed for fabrication.

The capstone portion of this project was to use the established STaR antennas and add a Built in Self-Test system to ensure the quality of the signals being received. This part of the project required a MatLab simulation to be built, a layout created, and a PCB designed for fabrication. In theory, the test BiST unit will allow the gain and delay of the transmitted signal and then cancel out unneeded interference for the received signal. However, this design required multiple paths to maintain the same lengths to keep the signals in phase for comparison. The purpose of this thesis is to show the potential drop-offs of the quality of the signals from being out of phase due to the wires that should be similar, being off by a certain percentage. This project will calculate the theoretical delay of all wires being out of sync and then add this delay to the established MatLab simulation. This report will show the relationship between the error of the received variables and what the actual generated values. And, the last part of the document will demonstrate the simulation by creating a signal and comparing it to its received counterpart. The end result of the study showed that the percent error between what is seen and what is expected is near insignificant and, hence, not an issue with regards to the quality of the project.
ContributorsSomers, Tyler Scott (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135767-Thumbnail Image.png
Description
The purpose of the Simultaneous Transmit and Receive Antenna project is to design a test circuit that will allow us to use an antenna to both send out and receive a signal at the same time on the same frequency. The test circuit will generate DC voltage levels that we

The purpose of the Simultaneous Transmit and Receive Antenna project is to design a test circuit that will allow us to use an antenna to both send out and receive a signal at the same time on the same frequency. The test circuit will generate DC voltage levels that we can use to solve for the gain and delay of the transmit interference, so we will then be able to cancel out the unwanted signal from the received signal. With a theoretically perfect setup, the transmitted signal will be able to be completely isolated from the received signal, leaving us with only what we want at the output. In practice, however, this is not the case. There are many variables that will affect the integrity of the DC output of the test signal. As the output voltage level deviates from its theoretical perfect measurement, the precision to which we are able to solve for the gain and delay values decreases. The focus of this study is to estimate the effect of using a digital measurement tool to measure the output of the test circuit. Assuming a voltmeter with 1 volt full range, simulations were run using measurements stored at different bit resolutions, from 8-bit storage up to 16-bit storage. Since the physical hardware for the Simultaneous Transmit and Receive test circuit is not currently available, these tests were performed with an edited version of the Matlab simulation created for the Senior Design project. The simulation was run 2000 times over each bit resolution to get a wide range of generated values, then the error from each run was analyzed to come to a conclusion on the effect of the digital measurement on the design. The results of these simulations as well as further details of the project and testing are described inside this document.
ContributorsKral, Brandon Michael (Author) / Ozev, Sule (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05