Matching Items (2)
Filtering by

Clear all filters

153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
149449-Thumbnail Image.png
Description
Advances in the area of ubiquitous, pervasive and wearable computing have resulted in the development of low band-width, data rich environmental and body sensor networks, providing a reliable and non-intrusive methodology for capturing activity data from humans and the environments they inhabit. Assistive technologies that promote independent living amongst elderly

Advances in the area of ubiquitous, pervasive and wearable computing have resulted in the development of low band-width, data rich environmental and body sensor networks, providing a reliable and non-intrusive methodology for capturing activity data from humans and the environments they inhabit. Assistive technologies that promote independent living amongst elderly and individuals with cognitive impairment are a major motivating factor for sensor-based activity recognition systems. However, the process of discerning relevant activity information from these sensor streams such as accelerometers is a non-trivial task and is an on-going research area. The difficulty stems from factors such as spatio-temporal variations in movement patterns induced by different individuals and contexts, sparse occurrence of relevant activity gestures in a continuous stream of irrelevant movements and the lack of real-world data for training learning algorithms. This work addresses these challenges in the context of wearable accelerometer-based simple activity and gesture recognition. The proposed computational framework utilizes discriminative classifiers for learning the spatio-temporal variations in movement patterns and demonstrates its effectiveness through a real-time simple activity recognition system and short duration, non- repetitive activity gesture recognition. Furthermore, it proposes adaptive discriminative threshold models trained only on relevant activity gestures for filtering irrelevant movement patterns in a continuous stream. These models are integrated into a gesture spotting network for detecting activity gestures involved in complex activities of daily living. The framework addresses the lack of real world data for training, by using auxiliary, yet related data samples for training in a transfer learning setting. Finally the problem of predicting activity tasks involved in the execution of a complex activity of daily living is described and a solution based on hierarchical Markov models is discussed and evaluated.
ContributorsChatapuram Krishnan, Narayanan (Author) / Panchanathan, Sethuraman (Thesis advisor) / Sundaram, Hari (Committee member) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Cook, Diane (Committee member) / Arizona State University (Publisher)
Created2010