Matching Items (3)
Filtering by

Clear all filters

153132-Thumbnail Image.png
Description
Wireless video sensor networks has been examined and evaluated for wide range

of applications comprising of video surveillance, video tracking, computer vision, remote

live video and control. The reason behind importance of sensor nodes is its ease

of implementation, ability to operate in adverse environments, easy to troubleshoot,

repair and the high performance level.

Wireless video sensor networks has been examined and evaluated for wide range

of applications comprising of video surveillance, video tracking, computer vision, remote

live video and control. The reason behind importance of sensor nodes is its ease

of implementation, ability to operate in adverse environments, easy to troubleshoot,

repair and the high performance level. The biggest challenges with the architectural

design of wireless video sensor networks are power consumption, node failure,

throughput, durability and scalability. The whole project here is to create a gateway

node to integrate between "Internet of things" framework and wireless sensor network.

Our Flexi-Wireless Video Sensor Node Platform (WVSNP) is a low cost, low

power and compatible with traditional sensor network where the main focus was on

maximizing throughput or minimizing node deployment. My task here in this project

was to address the challenges of video power consumption for wireless video sensor

nodes. While addressing the challenges, I performed analysis of predicting the nodes

durability when it is battery operated and to choose appropriate design parameters.

I created a small optimized image to boot up Wandboard DUAL/QUAD board, capture

videos in small/big chunks from the board. The power analysis was performed

for only capturing scenarios, playback of reference videos and, live capturing and realtime

playing of videos on WVSNP player. Each sensor node in sensor network are

battery operated and runs without human intervention. Thus to predict nodes durability,

for dierent video size and format, I have collected power consumption results

and based on this I have provided some recommendation of HW/SW architecture.

i
ContributorsShah, Tejas (Author) / Reisslein, Martin (Thesis advisor) / Kitchen, Jennifer (Committee member) / McGarry, Michael (Committee member) / Arizona State University (Publisher)
Created2014
154564-Thumbnail Image.png
Description
Since the inception of Internet of Things (IoT) framework, the amount of interaction between electronic devices has tremendously increased and the ease of implementing software between such devices has bettered. Such data exchange between devices, whether between Node to Server or Node to Node, has paved way for creating new

Since the inception of Internet of Things (IoT) framework, the amount of interaction between electronic devices has tremendously increased and the ease of implementing software between such devices has bettered. Such data exchange between devices, whether between Node to Server or Node to Node, has paved way for creating new business models. Wireless Video Sensor Network Platforms are being used to monitor and understand the surroundings better. Both hardware and software supporting such devices have become much smaller and yet stronger to enable these. Specifically, the invention of better software that enable Wireless data transfer have become more simpler and lightweight technologies such as HTML5 for video rendering, Common Gateway Interface(CGI) scripts enabling interactions between client and server and WebRTC from Google for peer to peer interactions. The role of web browsers in enabling these has been vastly increasing.

Although HTTP is the most reliable and consistent data transfer protocol for such interactions, the most important underlying challenge with such platforms is the performance based on power consumption and latency in data transfer.

In the scope of this thesis, two applications using CGI and WebRTC for data transfer over HTTP will be presented and the power consumption by the peripherals in transmitting the data and the possible implications for those will be discussed.
ContributorsRentala, Sri Harsha (Author) / Reisslein, Martin (Thesis advisor) / Kitchen, Jennifer (Committee member) / McGarry, Michael (Committee member) / Arizona State University (Publisher)
Created2016
157900-Thumbnail Image.png
Description
Readout Integrated Circuits(ROICs) are important components of infrared(IR) imag

ing systems. Performance of ROICs affect the quality of images obtained from IR

imaging systems. Contemporary infrared imaging applications demand ROICs that

can support large dynamic range, high frame rate, high output data rate, at low

cost, size and power. Some of these applications are

Readout Integrated Circuits(ROICs) are important components of infrared(IR) imag

ing systems. Performance of ROICs affect the quality of images obtained from IR

imaging systems. Contemporary infrared imaging applications demand ROICs that

can support large dynamic range, high frame rate, high output data rate, at low

cost, size and power. Some of these applications are military surveillance, remote

sensing in space and earth science missions and medical diagnosis. This work focuses

on developing a ROIC unit cell prototype for National Aeronautics and Space Ad

ministration(NASA), Jet Propulsion Laboratory’s(JPL’s) space applications. These

space applications also demand high sensitivity, longer integration times(large well

capacity), wide operating temperature range, wide input current range and immunity

to radiation events such as Single Event Latchup(SEL).

This work proposes a digital ROIC(DROIC) unit cell prototype of 30ux30u size,

to be used mainly with NASA JPL’s High Operating Temperature Barrier Infrared

Detectors(HOT BIRDs). Current state of the art DROICs achieve a dynamic range

of 16 bits using advanced 65-90nm CMOS processes which adds a lot of cost overhead.

The DROIC pixel proposed in this work uses a low cost 180nm CMOS process and

supports a dynamic range of 20 bits operating at a low frame rate of 100 frames per

second(fps), and a dynamic range of 12 bits operating at a high frame rate of 5kfps.

The total electron well capacity of this DROIC pixel is 1.27 billion electrons, enabling

integration times as long as 10ms, to achieve better dynamic range. The DROIC unit

cell uses an in-pixel 12-bit coarse ADC and an external 8-bit DAC based fine ADC.

The proposed DROIC uses layout techniques that make it immune to radiation up to

300krad(Si) of total ionizing dose(TID) and single event latch-up(SEL). It also has a

wide input current range from 10pA to 1uA and supports detectors operating from

Short-wave infrared (SWIR) to longwave infrared (LWIR) regions.
ContributorsPraveen, Subramanya Chilukuri (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Long, Yu (Committee member) / Arizona State University (Publisher)
Created2019