Matching Items (2)

Filtering by

Clear all filters

148300-Thumbnail Image.png

Association between Student Engagement and Resilience in the Context of COVID-19

Description

During the global COVID-19 pandemic in 2020, many universities shifted their focus to hosting classes and events online for their student population in order to keep them engaged. The present study investigated whether an association exists between student engagement (an

During the global COVID-19 pandemic in 2020, many universities shifted their focus to hosting classes and events online for their student population in order to keep them engaged. The present study investigated whether an association exists between student engagement (an individual’s engagement with class and campus) and resilience. A single-shot survey was administered to 200 participants currently enrolled as undergraduate students at Arizona State University. A multiple regression analysis and Pearson correlations were calculated. A moderate, significant correlation was found between student engagement (total score) and resilience. A significant correlation was found between cognitive engagement (student’s approach and understanding of his learning) and resilience and between valuing and resilience. Contrary to expectations, participation was not associated with resilience. Potential explanations for these results were explored and practical applications for the university were discussed.

Contributors

Agent

Created

Date Created
2021-05

147645-Thumbnail Image.png

Using Logistic Regression to Predict Stock Trends Based on Bag-of-Words Representations of News Article Headlines

Description

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict

We attempted to apply a novel approach to stock market predictions. The Logistic Regression machine learning algorithm (Joseph Berkson) was applied to analyze news article headlines as represented by a bag-of-words (tri-gram and single-gram) representation in an attempt to predict the trends of stock prices based on the Dow Jones Industrial Average. The results showed that a tri-gram bag led to a 49% trend accuracy, a 1% increase when compared to the single-gram representation’s accuracy of 48%.

Contributors

Agent

Created

Date Created
2021-05