Matching Items (2)

Filtering by

Clear all filters

135559-Thumbnail Image.png

Evaluating Drivers of Chemodenitrification in Tropical Peat Soil

Description

Nitrous oxide (N2O) is a major contributor to the greenhouse effect and to stratospheric ozone depletion. In soils, nitrogen reduction is performed by biotic and abiotic processes, including microbial denitrification

Nitrous oxide (N2O) is a major contributor to the greenhouse effect and to stratospheric ozone depletion. In soils, nitrogen reduction is performed by biotic and abiotic processes, including microbial denitrification and chemical denitrification. Chemical denitrification, or chemodenitrification, is the abiotic step-wise reduction of nitrate (NO3-), nitrite (NO2-), or nitric oxide (NO) to N2O in anoxic environments, with high turnover rates particularly in acidic soils. Chemodenitrification was identified in various environments, but the mechanism is still not understood. In this study, the factors influencing abiotic reduction of NO2- to N2O in acidic tropical peat soil are examined. These factors include pH, organic matter content, and dissolved ferrous iron. Anoxic peat soil from sites located in the Peruvian Amazon was used for incubations. The results show that peat soil (pH ~4.5) appears to reduce NO2- more quickly in the presence of lower pH and higher Fe(II) concentrations. NO2- is completely reduced in excess Fe(II), and Fe(II) is completely oxidized in excess NO2-, providing evidence for the proposed mechanism of chemodenitrification. In addition, first order reaction rate constants kFe(II) and kNO2- were calculated using concentration measurements over 4 hours, to test for the hypothesized reaction rate relationships kFe(II): kFe(II) kFe(II)~NO2- > kFe(II)>NO2- and kNO2-: kFe(II)NO2-. The NO2- k values followed the anticipated pattern, although the Fe(II) k value data was inconclusive. Organic material may also play a role in NO2- reduction through chemodenitrification, and future experimentation will test this possibility. How and to what extent the pH and the concentrations of organic matter and Fe(II) affect the kinetic rate of chemodenitrification will lend insight into the N2O production potential of natural tropical peatlands.

Contributors

Agent

Created

Date Created
  • 2016-05

154543-Thumbnail Image.png

Analyzing nitrogen in silicate glasses by secondary ion mass spectrometry

Description

Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited

Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited to currently active systems and sensitive to atmospheric contamination. A different methodological approach requires appropriate analytical parameters for nitrogen analysis in silicate glasses by secondary ion mass spectrometry (SIMS), which have not yet been established. To this end, we analyze various ion implanted basaltic and rhyolitic glasses by SIMS. We demonstrate that water content significantly affects the ion yields of 14N+ and 14N16O−, as well as the background intensity of 14N+ and 12C+. Application of implant-derived calibrations to natural samples provide the first reported concentrations of nitrogen in melt inclusions. These measurements are from samples from the Bishop Tuff in California, the Huckleberry Ridge Tuff of the Yellowstone Volcanic Center, and material from the Okaia and Oruanui eruptions in the Taupo Volcanic Center. In all studied material, we find maximum nitrogen contents of less than 45 ppm and that nitrogen concentration varies positively with CO2 concentration, which is interpreted to reflect partial degassing trend. Using the maximum measured nitrogen contents for each eruption, we find that the Bishop released >3.6 x 1013 g of nitrogen, the Huckleberry Ridge released >1.3 x 1014 g, the Okaia released >1.1 x 1011 g of nitrogen, the Oruanui released >4.7 x 1013 g of nitrogen. Simple calculations suggest that with concentrations such as these, rhyolitic eruptions may ephemerally increase the nitrogen flux to the atmosphere, but are insignificant compared to the 4 x 1021 g of nitrogen stored in the atmosphere.

Contributors

Agent

Created

Date Created
  • 2016