Matching Items (2)

135507-Thumbnail Image.png

Ionic Liquid Corrosion of Magnesium-Aluminum Alloys

Description

In 2015, the United States consumed about 140.43 billion gallons of gasoline, resulting in the emission of over 1 billion metric tons of carbon dioxide, according to the U.S. Energy

In 2015, the United States consumed about 140.43 billion gallons of gasoline, resulting in the emission of over 1 billion metric tons of carbon dioxide, according to the U.S. Energy Information Administration. Despite continued efforts to develop more efficient engines and cleaner fuels, a major barrier to reducing energy consumption and CO2 production is the mass of the vehicle. Replacing traditional automotive materials such as iron and steel with lighter-weight materials is a big step toward improving fuel economy. Magnesium has great potential for use in the automotive industry because of its low density, about 78% less than the density of steel, and high strength-to-weight ratio. Using cast magnesium instead of steel can reduce the overall weight of a vehicle, improving performance and increasing fuel efficiency. However, magnesium’s high susceptibility to corrosion limits its feasibility as a substitute for traditional materials.

This project aimed to understand the effects of composition and phase distribution on the corrosion behavior of magnesium-aluminum (Mg-Al) alloys in an ionic liquid electrolyte. The purpose of studying corrosion in nonaqueous ILs is to determine the anodic dissolution behaviors of the alloy phases without the interference of side reactions that occur in aqueous electrolytes, such as di-oxygen or water reduction. Three commercial Mg-Al alloys were studied: AZ91D (9% Al), AM60 (6% Al), and AZ31B (3% Al). An annealed alloy containing solid-solution α-phase Mg-Al with 5 at% aluminum content (Mg5Al) was also used. The ionic liquid chosen for this project was 1:2 molar ratio choline-chloride:urea (cc-urea), a deep eutectic solvent. After potentiostatic corrosion in cc-urea, the magnesium alloys were found to form a high surface area porous morphology as corrosion duration increased. This morphology consists of aluminum-rich ridges formed by Al nanowires surrounding an aluminum-poor base area, but with an overall increase in surface Al composition, indicating selective dealloying of the Mg in cc-urea and redistribution of the Al on the surface. Further work will focus on the development of hydrophobic coatings using ionic liquids.

Contributors

Agent

Created

Date Created
  • 2016-05

150335-Thumbnail Image.png

An in situ Surface Stress Study of Electrochemical Phenomena: Electrodeposition and Molecular Adsorption

Description

Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene

Over the last decade copper electrodeposition has become the dominant process by which microelectronic interconnects are made. Replacing ultra-high vacuum evaporative film growth, the technology known as the Cu damascene process has been widely implemented in the microelectronics industry since the early 2000s. The transition from vacuum film growth to electrodeposition was enabled by solution chemistries that provide "bottom-up" or superfilling capability of vias and trenches. While the process has been and is used widely, the actual mechanisms responsible for superfilling remain relatively unknown. This dissertation presents and discusses the background and results of experimental investigations that have been done using in situ electrochemical surface stress monitoring techniques to study the evolution of stress on Cu{111} thin film electrodes. Because of its extreme sensitivity to the structure on both the electrode and solution sides of the interface, surface stress monitoring as analytical technique is well suited for the study of electrodeposition. These ultra-high resolution stress measurements reveal the dynamic response of copper electrodes to a number of electrochemical and chemical experimental variables. In the case of constant current pulsed deposition and stripping, the surface stress evolution depends not only on the magnitude of the current pulse, but also shows a marked response to plating bath composition. The plating bath chemistries used in this work include (1) additive free, (2) deposition suppressing solutions that include polyethylene glycol (PEG) and sodium chloride (NaCl) as well as (3) full additive solution combinations which contain PEG, NaCl, and a one of two deposition accelerating species (bis-(sodiumsulfopropyl)disulfide (SPS) or mercaptopropane sulfonic acid (MPS)). The development of thin film stress is further investigated through a series of solution exchange experiments that correlate the magnitude of electrode exchange current density and the stress state of the film. Remarkably, stress changes as large as ~8.5 N/m are observed during solution exchanges at the open circuit potential. Overall, this research demonstrates that solution chemistry can have a large impact on thin film stress evolution, even for very small deposition thicknesses (e.g. <10 ML) or in the absence of net addition or removal of material from the electrode.

Contributors

Agent

Created

Date Created
  • 2011