Matching Items (5)
Filtering by

Clear all filters

157392-Thumbnail Image.png
Description
With a growing number of adults with autism spectrum disorder (ASD), more and more research has been conducted on majority male cohorts with ASD from young, adolescence, and some older age. Currently, males make up the majority of individuals diagnosed with ASD, however, recent research states that the gender ga

With a growing number of adults with autism spectrum disorder (ASD), more and more research has been conducted on majority male cohorts with ASD from young, adolescence, and some older age. Currently, males make up the majority of individuals diagnosed with ASD, however, recent research states that the gender gap is closing due to more advanced screening and a better understanding of how females with ASD present their symptoms. Little research has been published on the neurocognitive differences that exist between older adults with ASD compared to neurotypical (NT) counterparts, and nothing has specifically addressed older women with ASD. This study utilized neuroimaging and neuropsychological tests to examine differences between diagnosis and sex of four distinct groups: older men with ASD, older women with ASD, older NT men, and older NT women. In each group, hippocampal size (via FreeSurfer) was analyzed for differences as well as correlations with neuropsychological tests. Participants (ASD Female, n = 12; NT Female, n = 14; ASD Male, n = 30; NT Male = 22), were similar according to age, IQ, and education. The results of the study indicated that the ASD Group as a whole performed worse on executive functioning tasks (Wisconsin Card Sorting Test, Trails Making Test) and memory-related tasks (Rey Auditory Verbal Learning Test, Weschler Memory Scale: Visual Reproduction) compared to the NT Group. Interactions of sex by diagnosis approached significance only within the WCST non-perseverative errors, with the women with ASD performing worse than NT women, but no group differences between men. Effect sizes between the female groups (ASD female vs. NT female) showed more than double that of the male groups (ASD male vs. NT male) for all WCST and AVLT measures. Participants with ASD had significantly smaller right hippocampal volumes than NT participants. In addition, all older women showed larger hippocampal volumes when corrected for total intracranial volume (TIV) compared to all older men. Overall, NT Females had significant correlations across all neuropsychological tests and their hippocampal volumes whereas no other group had significant correlations. These results suggest a tighter coupling between hippocampal size and cognition in NT Females than NT Males and both sexes with ASD. This study promotes further understanding of the neuropsychological differences between older men and women, both with and without ASD. Further research is needed on a larger sample of older women with and without ASD.
ContributorsWebb, Christen Len (Author) / Braden, B. Blair (Thesis advisor) / Azuma, Tamiko (Committee member) / Dixon, Maria (Committee member) / Arizona State University (Publisher)
Created2019
135492-Thumbnail Image.png
Description
This pilot study evaluated whether Story Champs and Puente de Cuentos helped bilingual preschoolers increase their usage of emotional terms and ability to tell stories. Participants in this study included 10 Spanish-English bilingual preschoolers. Intervention was conducted in 9 sessions over 3 days using the Test of Narrative Retell to

This pilot study evaluated whether Story Champs and Puente de Cuentos helped bilingual preschoolers increase their usage of emotional terms and ability to tell stories. Participants in this study included 10 Spanish-English bilingual preschoolers. Intervention was conducted in 9 sessions over 3 days using the Test of Narrative Retell to measure results. Results did not find significant gains in either emotional term usage or ability to tell stories, but the results were promising as a pilot study.
ContributorsSato, Leslie Mariko (Author) / Restrepo, Maria (Thesis director) / Dixon, Maria (Committee member) / Department of Speech and Hearing Science (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171522-Thumbnail Image.png
Description
The brain uses the somatosensory system to interact with the environment and control movements. Additionally, many movement disorders are associated with deficits in the somatosensory sensory system. Thus, understanding the somatosensory system is essential for developing treatments for movement disorders. Previous studies have extensively examined the role of the somatosensory

The brain uses the somatosensory system to interact with the environment and control movements. Additionally, many movement disorders are associated with deficits in the somatosensory sensory system. Thus, understanding the somatosensory system is essential for developing treatments for movement disorders. Previous studies have extensively examined the role of the somatosensory system in controlling the lower and upper extremities; however, little is known about the contributions of the orofacial somatosensory system. The overall goal of this study was to determine factors that influence the sensitivity of the orofacial somatosensory system. To measure the somatosensory system's sensitivity, transcutaneous electrical current stimulation was applied to the skin overlaying the trigeminal nerve on the lower portion of the face. After applying stimulation, participants' sensitivity was determined through the detection of the electrical stimuli (i.e., perceptual threshold). The data analysis focused on the impact of (1) stimulation parameters, (2) electrode placement, and (3) motor tasks on the perceptual threshold. The results showed that, as expected, stimulation parameters (such as stimulation frequency and duration) influenced perceptual thresholds. However, electrode placement (left vs. right side of the face) and motor tasks (lip contraction vs. rest) did not influence perceptual thresholds. Overall, these findings have important implications for designing and developing therapeutic neuromodulation techniques based on trigeminal nerve stimulation.
ContributorsKhoury, Maya Elie (Author) / Daliri, Ayoub (Thesis advisor) / Patten, Jake (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2022
171445-Thumbnail Image.png
Description
Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally

Stroke is the leading cause of long-term disability in the U.S., with up to 60% of strokescausing speech loss. Individuals with severe stroke, who require the most frequent, intense speech therapy, often cannot adhere to treatments due to high cost and low success rates. Therefore, the ability to make functionally significant changes in individuals with severe post- stroke aphasia remains a key challenge for the rehabilitation community. This dissertation aimed to evaluate the efficacy of Startle Adjuvant Rehabilitation Therapy (START), a tele-enabled, low- cost treatment, to improve quality of life and speech in individuals with severe-to-moderate stroke. START is the exposure to startling acoustic stimuli during practice of motor tasks in individuals with stroke. START increases the speed and intensity of practice in severely impaired post-stroke reaching, with START eliciting muscle activity 2-3 times higher than maximum voluntary contraction. Voluntary reaching distance, onset, and final accuracy increased after a session of START, suggesting a rehabilitative effect. However, START has not been evaluated during impaired speech. The objective of this study is to determine if impaired speech can be elicited by startling acoustic stimuli, and if three days of START training can enhance clinical measures of moderate to severe post-stroke aphasia and apraxia of speech. This dissertation evaluates START in 42 individuals with post-stroke speech impairment via telehealth in a Phase 0 clinical trial. Results suggest that impaired speech can be elicited by startling acoustic stimuli and that START benefits individuals with severe-to-moderate post-stroke impairments in both linguistic and motor speech domains. This fills an important gap in aphasia care, as many speech therapies remain ineffective and financially inaccessible for patients with severe deficits. START is effective, remotely delivered, and may likely serve as an affordable adjuvant to traditional therapy for those that have poor access to quality care.
ContributorsSwann, Zoe Elisabeth (Author) / Honeycutt, Claire F (Thesis advisor) / Daliri, Ayoub (Committee member) / Rogalsky, Corianne (Committee member) / Liss, Julie (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2022
158859-Thumbnail Image.png
Description
Speech sound disorders (SSDs) are the most prevalent type of communication disorder in children. Clinically, speech-language pathologists (SLPs) rely on behavioral methods for assessing and treating SSDs. Though clients typically experience improved speech outcomes as a result of therapy, there is evidence that underlying deficits may persist even

Speech sound disorders (SSDs) are the most prevalent type of communication disorder in children. Clinically, speech-language pathologists (SLPs) rely on behavioral methods for assessing and treating SSDs. Though clients typically experience improved speech outcomes as a result of therapy, there is evidence that underlying deficits may persist even in individuals who have completed treatment for surface-level speech behaviors. Advances in the field of genetics have created the opportunity to investigate the contribution of genes to human communication. Due to the heterogeneity of many communication disorders, the manner in which specific genetic changes influence neural mechanisms, and thereby behavioral phenotypes, remains largely unknown. The purpose of this study was to identify genotype-phenotype associations, along with perceptual, and motor-related biomarkers within families displaying SSDs. Five parent-child trios participated in genetic testing, and five families participated in a combination of genetic and behavioral testing to help elucidate biomarkers related to SSDs. All of the affected individuals had a history of childhood apraxia of speech (CAS) except for one family that displayed a phonological disorder. Genetic investigation yielded several genes of interest relevant for an SSD phenotype: CNTNAP2, CYFIP1, GPR56, HERC1, KIAA0556, LAMA5, LAMB1, MDGA2, MECP2, NBEA, SHANK3, TENM3, and ZNF142. All of these genes showed at least some expression in the developing brain. Gene ontology analysis yielded terms supporting a genetic influence on central nervous system development. Behavioral testing revealed evidence of a sequential processing biomarker for all individuals with CAS, with many showing deficits in sequential motor skills in addition to speech deficits. In some families, participants also showed evidence of a co-occurring perceptual processing biomarker. The family displaying a phonological phenotype showed milder sequential processing deficits compared to CAS families. Overall, this study supports the presence of a sequential processing biomarker for CAS and shows that relevant genes of interest may be influencing a CAS phenotype via sequential processing. Knowledge of these biomarkers can help strengthen precision of clinical assessment and motivate development of novel interventions for individuals with SSDs.
ContributorsBruce, Laurel (Author) / Peter, Beate (Thesis advisor) / Daliri, Ayoub (Committee member) / Liu, Li (Committee member) / Scherer, Nancy (Committee member) / Weinhold, Juliet (Committee member) / Arizona State University (Publisher)
Created2020