Matching Items (3)
Filtering by

Clear all filters

137504-Thumbnail Image.png
Description
The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use of the inverse fast Fourier transform algorithm. By minimizing the error of the PRM approximation at the sampled Fourier modes, the PRM can also be used to improve on initial edge location estimates. Numerical examples show that using the PRM to improve on initial edge location estimates and then taking of the PRM approximation of the integer frequency Fourier coefficients is a viable way to reconstruct the underlying function in one dimension. In particular, the PRM is shown to converge more quickly and to be more robust than current resampling techniques used in MRI, and is particularly amenable to highly irregular sampling patterns.
ContributorsGutierrez, Alexander Jay (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Viswanathan, Adityavikram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
137044-Thumbnail Image.png
Description
In applications such as Magnetic Resonance Imaging (MRI), data are acquired as Fourier samples. Since the underlying images are only piecewise smooth, standard recon- struction techniques will yield the Gibbs phenomenon, which can lead to misdiagnosis. Although filtering will reduce the oscillations at jump locations, it can often have the

In applications such as Magnetic Resonance Imaging (MRI), data are acquired as Fourier samples. Since the underlying images are only piecewise smooth, standard recon- struction techniques will yield the Gibbs phenomenon, which can lead to misdiagnosis. Although filtering will reduce the oscillations at jump locations, it can often have the adverse effect of blurring at these critical junctures, which can also lead to misdiagno- sis. Incorporating prior information into reconstruction methods can help reconstruct a sharper solution. For example, compressed sensing (CS) algorithms exploit the expected sparsity of some features of the image. In this thesis, we develop a method to exploit the sparsity in the edges of the underlying image. We design a convex optimization problem that exploits this sparsity to provide an approximation of the underlying image. Our method successfully reduces the Gibbs phenomenon with only minimal "blurring" at the discontinuities. In addition, we see a high rate of convergence in smooth regions.
ContributorsWasserman, Gabriel Kanter (Author) / Gelb, Anne (Thesis director) / Cochran, Doug (Committee member) / Archibald, Rick (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
154381-Thumbnail Image.png
Description
High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI

High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use

in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are used to address three problems: reconstructing piecewise smooth functions from sparse and and noisy Fourier data, recovering edge locations in piecewise smooth functions from sparse and noisy Fourier data, and reducing time-stepping constraints when numerically solving certain time-dependent hyperbolic partial differential equations.
ContributorsDenker, Dennis (Author) / Gelb, Anne (Thesis advisor) / Archibald, Richard (Committee member) / Armbruster, Dieter (Committee member) / Boggess, Albert (Committee member) / Platte, Rodrigo (Committee member) / Saders, Toby (Committee member) / Arizona State University (Publisher)
Created2016